logo1

logoT

 

Для чего нужен лямбда зонд


Зачем нужен "этот" лямбда-зонд? Часть 1 — DRIVE2

Сейчас у меня на очереди проверка кислородных датчиков т.е лямбда-зондов. поэтому решил углубиться в эту тему… почитать, нашёл интересную статейку может кому будет интересно… Заодно узнаете что это за зверёк и зачем он нужен. как его проверить и чем можно его чистить…

Автолюбитель пошел нынче грамотный – даже владельцев стареньких «Жигулей» не удивишь заморскими словечками ABS, ESP, Jetronic, катализатор, инжектор, лямбда-зонд… Последний термин, правда, больше волнует владельцев иномарок. Случается, в автомобиле вдруг «тяга» упала, он стал есть бензин: как не в себя, опять оштрафовали за СО, а причина всего этого неизвестна. На СТО мастера скажут: «Лямбда сдохла», предложат ее заменить, но цены! А не поможет, тогда что? Среди знакомых никто толком не знает, как к «лямбде» подступиться: «вещь в себе»… Действительно, лямбда-зонд – штука загадочная, но все же давайте попробуем в этой загадке разобраться.Лямбда-датчик зондирует выхлопЗачем нужен лямбда-зондЖесткие экологические нормы давно узаконили применение на автомобилях каталитических нейтрализаторов (в обиходе – катализаторы) – устройств, способствующих снижению содержания вредных веществ в выхлопных газах. Катализатор вещь хорошая, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси обеспечить катализаторам «долголетие» невозможно – вот тут и приходит на помощь датчик кислорода, он же О2-датчик, он же лямбда-зонд (ЛЗ).

Название датчика происходит от греческой буквы l (лямбда), которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится 1 часть топлива, l равна 1 (график 1).

График 1. Зависимость мощности двигателя (P) и расхода топлива (Q) от коэффициента избытка воздуха (l)

Полное сгорание и максимальная мощность достигается при l=1.

«Окно» эффективной работы катализатора очень узкое: l=1±0,01. Обеспечить такую точность возможно только с помощью систем питания с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда-зонда.Избыток воздуха в смеси измеряется весьма оригинальным способом – путем определения в выхлопных газах содержания остаточного кислорода (О2). Поэтому лямбда-зонд и стоит в выпускном коллекторе перед катализатором. Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива. На некоторых современных моделях автомобилей имеется еще один лямбда-зонд. Расположен он на выходе катализатора. Этим достигается большая точность приготовления смеси и контролируется эффективность работы катализатора (рис. 1).

Рис. 1. Схема l-коррекции с одним и двумя датчиками кислорода двигателя1 – впускной коллектор; 2 – двигатель; 3 – блок управления двигателем; 4 – топливная форсунка; 5 – основной лямбда-зонд; 6 – дополнительный лямбда-зонд; 7 – каталитический нейтрализатор.

Принцип работыЛямбда-зонд действует по принципу гальванического элемента с твердым электролитом в виде керамики из диоксида циркония (ZrO2). Керамика легирована оксидом иттрия, а поверх нее напылены токопроводящие пористые электроды из платины. Один из электродов «дышит» выхлопными газами, а второй – воздухом из атмосферы (рис.2).

Эффективное измерение остаточного кислорода в отработавших газах лямбда-зонд обеспечивает после разогрева до температуры 300 – 400оС. Только в таких условиях циркониевый электролит приобретает проводимость, а разница в количестве атмосферного кислорода и кислорода в выхлопной трубе ведет к появлению на электродах лямбда-зонда выходного напряжения.При пуске и прогреве холодного двигателя управление впрыском топлива осуществляется без участия этого датчика, а коррекция состава топливо-воздушной смеси осуществляется по сигналам других датчиков (положения дроссельной заслонки, температуры охлаждающей жидкости, числа оборотов коленвала и др.). Особенностью циркониевого лямбда-зонда является то, что при малых отклонениях состава смеси от идеального (0,97 Ј l Ј 1,03) напряжение на его выходе изменяется скачком в интервале 0,1 — 0,9 В (график 2).Кроме циркониевых, существуют кислородные датчики на основе двуокиси титана (TiO2). При изменении содержания кислорода (О2) в отработавших газах они изменяют свое объемное сопротивление. Генерировать ЭДС титановые датчики не могут; они конструктивно сложны и дороже циркониевых, поэтому, несмотря на применение в некоторых автомобилях (Nissan, BMW, Jaguar), широкого распространения не получили.

Для повышения чувствительности лямбда-зондов при пониженных температурах и после запуска холодного двигателя используют принудительный подогрев. Нагревательный элемент (НЭ) расположен внутри керамического тела датчика и подключается к электросети автомобиля (рис. 3).

Рис. 3. Конструкция датчика кислорода с подогревателем1 – керамическое основание; 2, 8 – контакты НЭ; 3 – нагревательный элемент (НЭ); 4 – твердый электролит ZrO2 с напыленными платиновыми электродами; 5 – защитный кожух с прорезями; 6 – металлический корпус с резьбой крепления; 7 – уплотнительное кольцо; 9 – выводы датчика.

Если ЛЗ «врет»В этом случае ЭБУ начинает работать по усредненным параметрам, записанным в его памяти: при этом состав образующейся топливно-воздушной смеси будет отличаться от идеального. В результате появится повышенный расход топлива, неустойчивая работа двигателя на холостом ходу, увеличение содержания СО в отработавших газах, снижение динамических характеристик, но машина при этом остается на ходу. В некоторых моделях автомобилей ЭБУ реагирует на отказ лямбда-зонда очень серьезно и начинает так рьяно увеличивать количество подаваемого в цилиндры топлива, что запас горючего в баке «тает» на глазах, из трубы валит черный дым, СО «зашкаливает», а двигатель «тупеет» и на ближайшую СТО вам, скорее всего, придется добираться на буксире.Перечень возможных неисправностей лямбда-зонда достаточно большой и некоторые из них (потеря чувствительности, уменьшение быстродействия) самодиагностикой автомобиля не фиксируются. Поэтому окончательное решение о замене датчика можно принять только после его тщательной проверки, которую лучше всего поручить специалистам. Следует особо отметить, что попытки замены неисправного лямбда-зонда имитатором ни к чему не приведут – ЭБУ не распознает «чужие» сигналы, и не использует их для коррекции состава приготавливаемой горючей смеси, т.е. попросту «игнорирует».При сгоревшем или отключенном лямбда-зонде содержание СО в выхлопе возрастает на порядок: от 0,1 – 0,3% до 3 – 7% и уменьшить его значение не всегда удается, т. к. запаса хода винта качества смеси может не хватить. В автомобилях, система l-коррекции которых имеет два кислородных датчика, дело обстоит еще сложнее. В случае отказа второго лямбда-зонда (или «пробивки» секции катализатора) добиться нормальной работы двигателя практически невозможно.

Вообще лямбда-зонд – наиболее уязвимый датчик автомобиля с системой впрыска. Его ресурс составляет 40 – 80 тыс. км в зависимости от условий эксплуатации и исправности двигателя. Плохое состояние маслосъемных колец, попадание антифриза в цилиндры и выпускные трубопроводы, обогащенная топливно-воздушная смесь, сбои в системе зажигания сильно сокращают срок его службы. Применение этилированного бензина категорически недопустимо – свинец «отравляет» платиновые электроды лямбда-зонда за несколько бесконтрольных заправок.

Рис. 4. Контактные выводы наиболее распространенных циркониевых лямбда-зондова – без подогревателя; б, с – с подогревателем.

* цвет вывода может отличаться от указанного.

Махнем не глядя!Рекомендованный заводом-изготовителем лямбда-зонд и сходные по конструкции циркониевые датчики взаимозаменяемы. Возможна замена неподогреваемых датчиков на подогреваемые (но не наоборот!). Однако при этом может возникнуть проблема несовместимости разъемов и отсутствия в машине цепи питания для нагревателя лямбда-зонда. Недостающие провода можно проложить самостоятельно, а вместо разъема использовать стандартные автомобильные контакты.Цветовая маркировка выводов лямбда-зондов может различаться, но сигнальный провод всегда будет иметь темный цвет (обычно – черный). «Массовый» провод может быть белым, серым или желтым (рис. 4). Титановые лямбда-зонды от циркониевых легко отличить по цвету «накального» вывода подогревателя – он всегда красный. При замене 3-контактного лямбда-зонда на 4-контактный необходимо надежно соединить с «массой» автомобиля провод заземления подогревателя и сигнальный «минус», а накальный провод подогревателя через реле и предохранитель подключить к «плюсу» аккумулятора.

Подключение напрямую к катушке зажигания нежелательно, т. к. в цепи ее питания может стоять понижающее сопротивление. Подключиться к контактам топливного насоса достаточно сложно. Лучше всего подключить реле подогревателя лямбда-зонда к замку зажигания.

www.drive2.ru

Для чего нужен лямбда зонд? — DRIVE2

Кратко:

Лямбда зонд устанавливается в любых транспортных средствах, приводимых в движение с помощью двигателей внутреннего сгорания. Лямбда зонд:

• Регулирует смесеобразование, удерживая расход топлива на максимально низком уровне.• Обеспечивает катализатору оптимальные условия работы.

Функция лямбда зонда в современном автомобиле.

На все автомобили, начиная с конца 80-х годов прошлого века, устанавливаются катализаторы, задачей которых является очищение выхлопных газов от вредных примесей. Для оптимальной и эффективной работы катализатора необходимо подготовить строго определённое качество воздушно-топливной смеси для двигателя и проконтролировать качественные характеристики выхлопных газов, возникших в результате её сгорания. Эту функцию выполняет лямбда зонд.

Лямбда зонд – также называемый кислородным датчиком или датчиком кислорода – измеряет количество остаточного кислорода в выхлопных газах. Отсюда пошло основное название этого датчика – кислородный. Исходя из количества остаточного кислорода, датчик посылает сигналы в электронный блок управления двигателем, который, в свою очередь, регулирует количество подаваемого топлива или, другими словами, изменяет качество воздушно-топливной смеси. Именно поэтому так важна герметичность выхлопной системы в местах установки этих датчиков, поскольку, в результате подмеса воздуха извне параметры этих измерений нарушаются. Идеальное соотношение воздуха и топлива в смеси обозначается греческой буквой λ (лямбда) и равняется приблизительно 15 к 1, где 15 частей это воздух, а 1 часть это топливо. Отсюда и пошло наиболее распространённое в России название датчика – лямбда зонд.

Лямбда зонд установлен в трубы выхлопной системы автомобиля так, чтобы его рабочие поверхности обтекали выхлопные газы. Эти рабочие поверхности состоят из многослойных материалов обеспечивающих тестирование смеси. Тестирование смеси эффективно идёт только при высокой температуре рабочей поверхности, поэтому все современные датчики снабжены функцией принудительного прогрева. Для подробного рассмотрения конструкции датчика обратитесь к схеме 1.

Первый (верхний, регулирующий) лямбда зонд.

До начала 2000-х годов на автомобиль устанавливался только один датчик. Этот датчик устанавливался на отрезок выхлопной трубы между двигателем и катализатором и впоследствии, после появления второго датчика, получил свои нынешние названия: первый датчик или верхний или регулирующий. В задачу этого датчика входил вышеописанный процесс измерений и поскольку он устанавливается выше, чем второй этот датчик был назван верхним. Регулирующим он был назван по причине того, что именно он несёт основную нагрузку по регулированию воздушно-топливной смеси. Этот же датчик принимает на себя главный удар раскалённых токсичных газов двигателя, ещё не очищенных от ядовитых примесей катализатором. За счёт этого он и выходит из строя в среднем в 5-7 раз чаще, чем второй датчик.

Второй (нижний, диагностирующий) лямбда зонд.

После 2000-х годов, дополнительно к Первому датчику, в автомобилях стали устанавливать ещё один, при этом местоположение Первого не изменилось. Второй датчик стали устанавливать на отрезок выхлопной трубы от катализатора до глушителя. Задачей этого дополнительного датчика стала проверка качества очистки выхлопных газов, прошедших через катализатор. Он получил название «Второй» или «Нижний», поскольку устанавливался под днищем автомобиля. Другим названием этого датчика стало «Диагностирующий», оно отражало его функциональную отличие от Первого датчика – проверять качество очистки выхлопных газов. После появления Второго датчика блок управления рассчитывает параметры идеальной воздушно-топливной смеси на основании показаний их обоих. В результате удалось добиться дополнительного снижения расхода топлива и высочайшей степени очистки выхлопных газов от ядовитых примесей — 95%.

Следует заметить, что поскольку Второй датчик установлен после катализатора, где газы уже очищены от агрессивных примесей, он выходит из строя значительно реже и то в результате либо разрушения катализатора, либо в результате механического или термического повреждения.

Конструктивно оба датчика очень похожи. Тем не менее они имеют ряд различий, обусловленных их функциональностью. В последние годы первые и вторые лямбда зонды стали также отличаться и конструктивно. В качестве регулирующих датчиков всё чаще применяются сложные и дорогостоящие широкополосные датчики, в то время как в качестве диагнотических по прежнему используют циркониевые лямбда зонды.

Схематичное обозначение местоположения лямбда зондов на современном автомобиле.

Все автомобили объёмом двигателя более 2-х литров имеют по два Первых датчика и два Вторых датчика. Установка четырех датчиков продиктована большей мощностью таких двигателей требующих наличия двух катализаторов. В последние годы, в связи с введением более строгих требований по выбросам, стали устанавливать до трёх катализаторов, а соответственно понадобился и пятый кислородный датчик.

Разновидности лямбда зондов.

Лямбда зонд из диоксида циркония является самым распространённым на сегодняшний день типом кислородных датчиков.Менее распространёнными датчиками является широкополосные датчики и датчики воздух — топливо.

Совсем редкими являются лямбда зонд их диоксида титана, которые постепенно вытесняются из-за своей дороговизны.

www.drive2.ru

Для Чего Нужен Второй Лямбда Зонд

Что такое лямбда зонд

Введение жёстких экологических норм подтолкнуло автопроизводителей использовать на автомобилях катализаторы. Это устройства, которые помогают снизить содержание токсичных веществ в выхлопных газах. Каталитический нейтрализатор – вещь полезная, но эффективно работает только при определённых условиях. Если не контролировать постоянно состав топливно-воздушной смеси, то катализаторы долго не прослужат.

И здесь приходит на помощь лямбда зонд или так называемый датчик кислорода (в английской литературе его называют Lambda probe или Oxygen sensor). Ниже рассмотрим подробнее, что такое лямбда зонд, как он работает и для чего используется.

Как работает лямбда зонд

Схема работы лямбда зонда

Как сказано выше, лямбда зонд это датчик кислорода. Он измеряет количество кислорода в выхлопных газах. Для корректного измерения ему нужно прогреться до температуры 300 – 400°С. Именно в таких условиях электролит, входящий в конструкцию кислородного датчика, приобретает проводимость. При этом разница в объёме атмосферного кислорода и кислорода, содержащегося в выхлопной трубе, приводит к возникновению выходного напряжения на электродах лямбда-зонда.

При запуске и прогреве холодного двигателя впрыск топлива происходит без использования данных от датчика кислорода, вместо этого состав топливно-воздушной смеси корректируется по сигналам других датчиков:

  • числа оборотов коленвала;
  • температуры охлаждающей жидкости;
  • положения дроссельной заслонки.

Чтобы повысить чувствительность лямбда-зондов при низких температурах и после запуска холодного мотора, применяют принудительный подогрев. Внутри керамического тела датчика находится нагревательный элемент, который подключается к автомобильной электросети.

Зачем нужен лямбда зонд

Как выглядит лямбда зонд уже в автомобиле

Лямбда зонд используется для поддержания оптимального состава воздуха и топлива, поступающего в двигатель автомобиля. Оптимальным считается такой состав, когда на 14,6-14,8 части воздуха приходится одна часть топлива. Это можно обеспечить только при помощи систем питания с электронным впрыском и при использовании лямбда зонда в цепи обратной связи.

Лямбда зонд. Зачем нужен? Как работает? Где стоит? НАГЛЯДНО!

Лямбда зонд – мегаважный датчик кислорода, который контролирует правильную работу мотора (двигателя),.

Лямбда зонд (датчик кислорода). Как обмануть второй лямбда зонд?

1 Работа инжекторной системы. 2 Что такое лямбда ? 3 Как работает лямбда ? 4 Для чего лямбда нужна ? 5 Что будет.

Замер переизбытка воздуха в смеси осуществляется довольно оригинальным способом – при помощи определения в отработавших газах содержания остаточного кислорода. Именно поэтому лямбда зонд установлен перед катализатором в выпускном коллекторе. Электрический сигнал датчика считывается электронным блоком управления (ЭБУ), а тот, в свою очередь, оптимизирует состав смеси, изменяя количество топлива, подаваемого в цилиндры двигателя.

На некоторых моделях автомобилей на выходе из катализатора расположен ещё один лямбда-зонд. Это позволяет достичь большей точности приготовления смеси и контролировать эффективность работы катализатора.

В зависимости от конструкции, различают два вида датчика:

  • широкополосный – используется в качестве входного датчика;
  • двухточечный – может устанавливаться и на входе, и на выходе из катализатора. Его принцип работы основан на измерении количества кислорода в атмосфере и выхлопных газах.

Видео о лямбда-зонде

Обманка лямбда зонда

Обманка лямбда зонда

Кислородный датчик подаёт сигнал тогда, когда он обнаружил изменения в содержании кислорода. Данный сигнал передаётся на контроллер, который его принимает и сравнивает полученную информацию с показателями, заложенными в памяти. Если полученные данные не совпадают с оптимальными значениями, то блок управления изменяет длительность впрыска. Этим достигаются следующие показатели:

  • экономия топлива;
  • максимальная эффективность работы двигателя;
  • уменьшение объёма вредных выхлопов.

Но немногие автолюбители прислушиваются к этим рекомендациям и начинают вспоминать о датчике только при появлении проблем. В итоге большинство водителей видят на приборной панели загоревшийся индикатор Check Engine. Причиной этому, скорее всего, стал вышедший из строя либо некорректно работающий кислородный датчик. Решением данной проблемы станет обманка лямбда зонда, которая бывает механической и электронной.

Механическая обманка

При выборе обманки такого типа вместо катализатора устанавливают специальный проставок – деталь из теплоустойчивой стали или бронзы со строго определёнными размерами. В проставке высверливается отверстие малого диаметра, через которое отработавшие газы смогут в него попадать.

Газы взаимодействуют с керамической крошкой, которую предварительно покрывают каталитическим слоем и помещают внутри проставка. В результате такого взаимодействия осуществляется окисление CH и CO кислородом, после чего снижается концентрация вредных веществ на выходе.

Если на автомобиле установлены два кислородных датчика, то сигналы с них будут различаться, блок управления распознает изменение синусоиды сигнала и расценит это как штатную работу катализатора. Данный вариант является самым дешёвым.

Читайте также: Что такое ЭБУ (Электронный блок управления) и как оно взаимодействует с лямбда-зондом и другими датчиками.

Обманка электронного типа

Такой тип обманки гораздо сложнее. В продаже имеются весьма технологичные обманки со встроенным микропроцессором. Они способны не просто обмануть блок управления, а обеспечить его корректную работу. Микропроцессор, установленный в таком устройстве, может оценить состояние выхлопных газов и сформировать сигнал, соответствующий сигналу со второго работающего датчика при исправном катализаторе.

vivauto.ru

Всё, что нужно знать о лямбда зондах. — Nissan Primera, 2.0 л., 2006 года на DRIVE2

Эту статью сохраняю скорей для себя и как пособие для тех, кто будет задавать такие частые вопросы по поводу датчиков кислорода (тема довольно актуальная).В предыдущей теме мы говорили о наших катализаторах (здесь : www.drive2.ru/l/1861652/). Теперь же узнаем больше и подробней о лямбда зондах:

Основные положения и функции Кислородного датчика :Теория.Жесткие экологические нормы во многих странах мира, стали диктовать количество выбросов вредных веществ, тем самым узаконили применение на автомобилях каталитических нейтрализаторов (в обиходе – катализаторы) – устройств, способствующих снижению содержания вредных веществ в выхлопных газах автомобилей с двигателем внутреннего сгорания. Катализатор — нужный и ответственный узел автомобиля, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси катализатор умрёт ( потеряет свои основные свойства и функции) очень быстро – для того чтобы, как можно дольше продлить его жизнь и приходит на помощь датчик кислорода, он же О2-датчик, он же лямбда-зонд (ЛЗ).

Название датчика происходит от греческой буквы L (лямбда), которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится 1 часть топлива (речь идет о объемном соотношении величин), L равна 1 (график 1). «Окно» эффективной работы катализатора очень узкое: L=1±0,01. Обеспечить такую точность возможно только с помощью систем питания с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда-зонда. Таким образом, Лямбда зонд создан и поставлен инженерами для информирования компьютера, инжекторного автомобиля об отклонении от нормы соотношения топливно воздушной смеси.

График 1. Зависимость мощности двигателя (P) и расхода топлива (Q) от коэффициента избытка воздуха (L)

Избыток воздуха в смеси измеряется весьма оригинальным способом ( причем этот способ не является обходным путем, а дает уверенно точные показания ) – определения в выхлопных газах содержания остаточного кислорода (О2). Поэтому лямбда-зонд и стоит в выпускном коллекторе перед катализатором. Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива. Таким образом, происходит регулировка не воздуха, а именно топлива, относительно воздуха, тем самым достигается максимальный процент сгорания топлива в цилиндрах, максимально эффективная работа катализатора, и как следствие максимальный крутящий момент двигателя автомобиля. Причем на большинстве современных моделях автомобилей имеется еще один лямбда-зонд, так же возможна установка дополнительных датчиков работающих в связке (например датчик температуры катализатора, расположен он на выходе катализатора). Этим достигается большая точность приготовления смеси и контролируется эффективность работы катализатора (рис. 1).

Рис. 1. Схема L-коррекции с одним и двумя датчиками кислорода двигателя 1 – впускной коллектор; 2 – двигатель; 3 – блок управления двигателем; 4 – топливная форсунка; 5 – основной лямбда-зонд; 6 – дополнительный лямбда-зонд; 7 – каталитический нейтрализатор.

Как работает Лямбда Зонд ( кислородный датчик )Лямбда-зонд действует по принципу гальванического элемента с твердым электролитом в виде керамики из диоксида циркония (ZrO2). Керамика легирована оксидом иттрия, а поверх нее напылены токопроводящие пористые электроды из платины. Один из электродов «дышит» выхлопными газами, а второй – воздухом из атмосферы (рис.2). Эффективное измерение остаточного кислорода в отработавших газах лямбда-зонд обеспечивает после разогрева до температуры 300 – 400оС. Только в таких условиях циркониевый электролит приобретает проводимость, а разница в количестве атмосферного кислорода и кислорода в выхлопной трубе ведет к появлению на электродах лямбда-зонда выходного напряжения.

Рис. 2. Схема датчика кислорода на основе диоксида циркония, расположенного в выхлопной трубе 1 – твердый электролит ZrO2; 2, 3 – наружный и внутренний электроды; 4 – контакт заземления; 5 – «сигнальный контакт»; 6 – выхлопная труба.

При пуске и прогреве холодного двигателя управление впрыском топлива осуществляется блоком управления автомобилем ( ЭБУ ) без участия этого датчика, а коррекция состава топливо-воздушной смеси осуществляется по сигналам других датчиков (положения дроссельной заслонки, температуры охлаждающей жидкости, числа оборотов коленвала и др.). Особенностью циркониевого лямбда-зонда является то, что при малых отклонениях состава смеси от идеального (0,97 < L < 1,03) напряжение на его выходе изменяется скачком в интервале 0,1 — 0,9 В (график 2). Таким образом этот материал обеспечивает идеальные показания сильно различные друг от друга даже при минимальном изменении измеряемой среды.

График 2. Зависимость напряжений лямбда-зонда от коэффициента избытка воздуха (L) при температуре датчика 500-800оС. А – условная точка средних показаний (Uвых » 0,5 В, при L=1,0). (Обогащение смеси (уменьшение О2 в выхлопе). Обеднение смеси (увеличение О2 в выхлопе).

График 2. Зависимость напряжений лямбда-зонда от коэффициента избытка воздуха (L) при температуре датчика 500-800оС. А – условная точка средних показаний (Uвых » 0,5 В, при L=1,0). (Обогащение смеси (уменьшение О2 в выхлопе). Обеднение смеси (увеличение О2 в выхлопе). Кроме циркониевых, существуют кислородные датчики на основе двуокиси титана (TiO2). При изменении содержания кислорода (О2) в отработавших газах они изменяют свое объемное сопротивление. Генерировать ЭДС титановые датчики не могут; они конструктивно сложны и дороже циркониевых, поэтому, несмотря на применение в некоторых автомобилях (Nissan, BMW, Jaguar), широкого распространения не получили. По мере развития автомобиле строения, так же ужесточаются и нормы экологических выбросов, таким образом мировые законодатели постоянно ужесточают экологические нормы. Это способствовало дальнейшему развитию лямбда зондов: для повышения чувствительности лямбда-зондов при пониженных температурах и после запуска холодного двигателя используют принудительный подогрев ( кислородные датчики с подогревом ) . Нагревательный элемент (НЭ) расположен внутри керамического тела датчика и подключается к электросети автомобиля (рис. 3).

Рис. 3. Конструкция датчика кислорода с подогревателем 1 – керамическое основание; 2, 8 – контакты НЭ; 3 – нагревательный элемент (НЭ); 4 – твердый электролит ZrO2 с напыленными платиновыми электродами; 5 – защитный кожух с прорезями; 6 – металлический корпус с резьбой крепления; 7 – уплотнительное кольцо; 9 – выводы датчика.

Принцип работы кислородного датчика на языке автомобилистов ( основные моменты):

Кислород содержит отрицательно заряженные ионы, которые собираются на платиновых электродах, и когда датчик достигает температуры около 400°C, любая разность потенциалов образует электрическое напряжение. В случае если смесь бедная, содержание кислорода в отработавших газах высокое. При сравнении с содержанием кислорода в атмосфере существует только очень маленькая разность потенциалов, и, как следствие, возникает небольшое напряжение (около 0,2–0,3 В). В случае если смесь богатая, то содержание кислорода в отработавших газах низкое. Создается большая разность потенциалов, поэтому возникает относительно более высокое напряжение (0,7–0,9 В). Система управления двигателем будет непрерывно подстраивать длительность импульсного сигнала под форсунки с целью выйти на среднее напряжение, составляющее около 0,4–0,6 В при значении лямбда около 1.0. Поскольку в процессе движения режимы работы двигателя постоянно изменяются, значение напряжения колеблется в обе стороны от среднего значения. Поэтому данный датчик в силу своей неспособности определить небольшие изменения в содержании кислорода известен как узкополосный. Датчик, установленный после каталитического нейтрализатора отработавших газов, действует по тому же способу, что и датчик перед ним, но с одним очень большим отличием. После того, как газы были обработаны каталитическим нейтрализатором, содержание кислорода в них остается на неизменном уровне. Это обеспечивает постоянное напряжение около 0,4–0,6 В. Теперь система управления двигателем может эффективно отслеживать работу каталитического нейтрализатора отработавших газов.

Если Лямбда Зонд «врет»

В этом случае ЭБУ начинает работать по усредненным параметрам, записанным в его памяти: при этом состав образующейся топливно-воздушной смеси будет отличаться от идеального. В результате появится повышенный расход топлива, неустойчивая работа двигателя на холостом ходу, увеличение содержания СО в отработавших газах, снижение динамических характеристик, но машина при этом остается на ходу. В некоторых моделях автомобилей ЭБУ реагирует на отказ лямбда-зонда очень серьезно и начинает так рьяно увеличивать количество подаваемого в цилиндры топлива, что запас горючего в баке «тает» на глазах, из трубы валит черный дым, СО «зашкаливает», а двигатель «тупеет» и на ближайшую СТО вам, скорее всего, придется добираться на буксире. Перечень возможных неисправностей лямбда-зонда достаточно большой и некоторые из них (потеря чувствительности, уменьшение быстродействия) самодиагностикой автомобиля не фиксируются.Поэтому окончательное решение о замене датчика можно принять только после его тщательной проверки, которую лучше всего поручить специалистам. Следует особо отметить, что попытки замены неисправного лямбда-зонда имитатором ни к чему не приведут – ЭБУ не распознает «чужие» сигналы, и не использует их для коррекции состава приготавливаемой горючей смеси, т.е. попросту «игнорирует». При сгоревшем или отключенном лямбда-зонде содержание СО в выхлопе возрастает на порядок: от 0,1 – 0,3% до 3 – 7% и уменьшить его значение не всегда удается, т. к. запаса хода винта качества смеси может не хватить. В автомобилях, система L-коррекции которых имеет два кислородных датчика, дело обстоит еще сложнее. В случае отказа второго лямбда-зонда (или «пробивки» секции катализатора) добиться нормальной работы двигателя практически невозможно. Вообще лямбда-зонд – наиболее уязвимый датчик автомобиля с системой впрыска. Его ресурс составляет 40 – 80 тыс. км в зависимости от условий эксплуатации и исправности двигателя. Плохое состояние маслосъемных колец, попадание антифриза в цилиндры и выпускные трубопроводы, обогащенная топливно-воздушная смесь, сбои в системе зажигания сильно сокращают срок его службы. Применение этилированного бензина категорически недопустимо – свинец «отравляет» платиновые электроды лямбда-зонда за несколько бесконтрольных заправок.

Рис. 4. Контактные выводы наиболее распространенных циркониевых лямбда-зондов а – без подогревателя; б, с – с подогревателем. * цвет вывода может отличаться от указанного.

В связи с тяжелыми условиями эксплуатации и минимальными значениями напряжения проблемы могут возникнуть очень легко. Зная, как работает датчик, вы получаете ключ к успешной диагностике кислородных датчиков. Контакт 1 — Нагреватель + Контакт 2 — Нагреватель — Контакт 3 — Сигнал напряжения Контакт 4 — Земля Обратите внимание, что все проверки сопротивления и непрерывности цепи необходимо выполнять при разъединенной цепи. Если у вас есть диагностический код неисправности, он даст вам некоторое представление о целостности цепи, но вы узнаете гораздо больше, если сами проведете испытание датчика. На датчике с четырьмя проводами два провода отвечают за нагревательный элемент, который предназначен для того, чтобы как можно быстрее довести температуру датчика до рабочей температуры 400°C. Самое простое, с чего можно начать, это проверить целостность цепи элемента нагревателя. Отключите датчик и измерьте сопротивление на контактах 1 и 2. Если оно лежит в пределах 5–30 Ом, проверьте сигнал, который поступает от электронного блока управления двигателем. Обычно он приводится в действие за счет сигнала модуляции длительности импульса (PWM), поступающего от электронного блока управления. Чтобы замерить воздействующий сигнал нагревателя, потребуется задействовать осциллоскоп. Следующий шаг — испытание самого датчика; сначала проверьте контакт между зажимом заземления 4 и землей. Если это возможно, исследуйте сигнал только после того, как двигатель достигнет рабочих условий, т.е. достаточно прогреется, и система управления начнет работать с замкнутым контуром. Сигнал должен переключаться между богатым и бедным состояниями ( с 0,2–0,3 В на 0,7–0,9 В); данное переключение должно происходить приблизительно каждую секунду. Если сигнал мал (среднее напряжение 0,3 В) или слишком велик (среднее напряжение 0,7 В), то, вероятно, датчик стал жертвой коррозии на платиновых электродах или загрязнения в отверстиях. Если автомобиль оснащен несколькими кислородными датчиками pre и post, можно получить более точную информацию. Используя данные двух или четырех каналов и накладывая сигналы, можно получить точные сведения о времени реакции и операционной/рабочей эффективности: сигналы от исправных датчиков должны быть зеркальным отражением друг друга».

Виды кислородных датчиков.

Существует несколько классификаций автомобильных кислородных датчиков: 1. По количеству проводов: 1-,2-,3-,4-,5-,6-контактные датчики. 2. По дизайну сенсорного элемента: “пальчиковые” и пластинчатые 3. По способу крепления в выхлопную трубу: резьбовые и фланцевые. 4. По ширине измерений лямбды: узкополосные (детектируют лямбду при величине >1) и широкополосные (детектируют лямбду от 0,7 до 1.6).

Одноконтактные датчики – имеют один сигнальный провод, по которому передаются генерируемые датчиком электрические импульсы.Двухконтактные датчики – имеют один сигнальный провод и один провод “на массу” (дублирует заземление через корпус датчика). Заземляющий провод позволяет более точно оценивать показания сигнального провода блоком управления двигателем.Трёхконтактные датчики – имеют один сигнальный провод, один провод “на массу” и один провод на нагревательный элемент. Эти датчики характеризуются следующими достоинствами: 1. Короткое время достижения датчиком рабочей температуры (более 350 градусов) вследствие чего снижается количество вредных выбросов при работе холодного двигателя; 2. увеличивается срок службы датчика, так как у нагреваемых датчиков изменение температуры происходит, более плавно, чем у датчиков без нагревательного элемента; 3. датчики, снабжённые нагревательным элементом, имеют менее строгие требования к месторасположению в выхлопной системе, что упрощает их техобслуживание. Мощность нагревательного элемента в кислородном датчике составляет либо 12Вт, либо 18Вт. Следует учитывать, что установка датчика с неправильно подобранной мощностью нагревательного элемента может привести к перегреву датчика и быстрому выходу его из строя.Четырёхконтактные датчики – обязательно имеют один сигнальный провод, один питающий на нагревательный элемент и один заземляющий провод. Функция последнего провода может быть различной и зависит от особенностей устройства системы управления конкретным двигателем. Четвёртый провод может быть либо ещё одним заземляющим (в случаях, когда заземление через корпус датчика не предусмотрено), либо питающим проводом для второго нагревательного элемента. Следует учитывать, что при ошибочной установки датчика с заземлением на корпус вместо датчика без заземления на корпус или наоборот может привести к тому, что блок управления двигателем не распознает сигналы, поступающие с кислородного датчика.Взаимозаменяемость. Рекомендованный заводом-изготовителем лямбда-зонд и сходные по конструкции циркониевые датчики взаимозаменяемы. Возможна замена не подогреваемых датчиков на подогреваемые (но не наоборот!). Однако при этом может возникнуть проблема несовместимости разъемов и отсутствия в машине цепи питания для нагревателя лямбда-зонда. Недостающие провода можно проложить самостоятельно, а вместо разъема использовать стандартные автомобильные контакты. Цветовая маркировка выводов лямбда-зондов может различаться, но сигнальный провод всегда будет иметь темный цвет (обычно – черный). «Массовый» провод может быть белым, серым или желтым (рис. 4). Титановые лямбда-зонды от циркониевых легко отличить по цвету «накального» вывода подогревателя – он всегда красный. При замене 3-контактного лямбда-зонда на 4-контактный необходимо надежно соединить с «массой» автомобиля провод заземления подогревателя и сигнальный «минус», а накальный провод подогревателя через реле и предохранитель подключить к «плюсу» аккумулятора. Подключение напрямую к катушке зажигания нежелательно, т. к. в цепи ее питания может стоять понижающее сопротивление. Подключиться к контактам топливного насоса достаточно сложно. Лучше всего подключить реле подогревателя лямбда-зонда к замку зажигания.

Расположение Кислородного датчика Ниссан :Кислородный датчик расположен на выпускном тракте двигателя. Если это рядный двигатель — то кислородный датчик расположен непосредственно на чугунном выпускном коллекторе, если же это V — образный двигатель или иной двигатель не с единым выпускным коллектором, то кислородный датчик располагается в месте схождения основных отводов выпускных коллекторов.

Почему следует заменить неисправный кислородный датчик?Замена неисправного кислородного датчика на новый датчик позволяет экономить топливо, улучшить динамику автомобиля, уменьшить токсичность выхлопных газов, является профилактикой преждевременного выхода из строя дорогостоящего катализатора.

Инструкция по замене, универсальная: Чтобы снять старый и установить новый кислородный датчик нужно убедиться в том, что зажигание выключено, а провода датчика отсоединены. Перед установкой нового зонда проверяют его маркировку на соответствие указанной в инструкции по эксплуатации, осматривают автомобиль на отсутствие механических повреждений, наличие кольца уплотнения, противопригарной смазки на резьбовой части. Затем датчик кислорода затягивают до полностью герметичного соединения, соединяя электроразъем, после чего можно проверять работоспособность нового датчика. Иногда датчик кислорода присоединяется к трубопроводу специальной пластиной, в пространстве между ней и трубопроводом находится прокладка с функцией герметика. Проверка работоспособности датчика производится только при его нагреве до температуры 350 градусов специальным оборудованием: газоанализатором, осциллографом, вольтметром, омметром. Поэтому сделать правильную замену кислородного датчика на Nissan и других автомобилях можно лишь в специализированном автосервисе.

Восстановление кислородного датчика : Проблема всех легковых автомобилей в России является завышенный расход бензина на подержанных автомобилях. Главной причиной этого не качественное топливо, которое загрязняет систему автомобиля, и в первую очередь лямбда зонт, в простонародье называют кислородным датчиком, который находиться на каталитическом нейтрализаторе(система очистки отработанных газов) Если отказ лямбда-зонда (ЛЗ) не вызван необратимыми изменениями в структуре его основы – слое циркониевой керамики, то датчик можно попробовать «оживить». Дело в том, что рабочая поверхность ЛЗ под защитным колпачком со временем покрывается нагаром и свинцовыми отложениями выхлопных газов. Датчик начинает «врать». Если этот налет удалить, то работоспособность ЛЗ восстанавливается. Поверхность датчика не позволяет производить ее чистку механическим способом (абразивной шкуркой или надфилем), т. к. вместе с нагаром с керамической основы неизбежно удаляются слои платинового напыления. Этот датчик отвечает за качество топливной смеси, ну и соответственно если он загрязнен, сигнал на компьютер автомобиля не будет соответствовать норме. тем самым машинка начинает кушать много бензина, покупка нового датчика сильно бьет по бюджету, его цена иногда доходит до 30 тысяч рублей в зависимости от марки автомобиля. И так оживляем!

Инструкция 1:1шаг Безопасно очистить ЛЗ можно, промыв его в ортофосфорной кислоте, которая за 10 – 20 мин. разъедает загрязнения, не трогая платиновые электроды. Перед промывкой датчик надо вскрыть. Для этого на токарном станке тонким резцом аккуратно, у самого основания отрезают защитный колпачок, изготовленный из нержавеющей стали. Использовать для этих целей ножовку по металлу нельзя – ею можно повредить керамическое тело датчика.2шаг Процедуру очистки можно ускорить, используя тонкую кисточку из натуральной щетины. Кисточкой осторожно наносят ортофосфорную кислоту, равномерно омывая, керамический стержень ЛЗ со всех сторон. Не следует погружать датчик в кислоту целиком – моется только его рабочая часть. По мере очищения черно-коричневая поверхность стержня приобретает стальной оттенок: это блестит платина, запыленная на керамику основы. После очистки датчик хорошо промывают водой и высушивают, а защитный колпачок крепят на место с помощью аргоновой сварки. Если под рукой нет необходимого оборудования, то колпачок можно не срезать. Вместо этого в нем с помощью напильника делают два «окошка» шириной 3 – 4 мм и через них с помощью такой же кисточки промывают датчик кислотой.

3шаг Восстановленный датчик завинчивают на свое место в машине, предварительно проверив состояние уплотнительного кольца. Промывку ЛЗ можно производить многократно, по мере его загрязнения. Если «реанимация» все же не принесла ожидаемых результатов, это значит, что датчик кислорода вышел из строя окончательно и вам ничего не остается, как идти в магазин за новым «информатором».

Инструкция 2:1. Выворачивание l-зонда на холодном двигателе может оказаться крайне затруднительным ввиду теплового сжатия металла выпускного коллектора/трубы системы выпуска. Во избежание риска повреждения компонентов, прежде чем приступать к снятию датчика, прогрейте двигатель в течение пары минут, — постарайтесь не обжечься о разогретые поверхности в процессе выполнения процедуры:a) Кислородные датчики оборудованы вмонтированным жгутом электропроводки с контактным разъемом. Повреждение данного жгута приводит к необратимому выходу датчика из строя, — соблюдайте осторожность; b) Старайтесь не допускать попадания на контактный разъем и жалюзи датчика масла, смазки, грязи, влаги и т.п.;c) НИ в коем случае не применяйте для чистки датчика никакие растворители;

d) Старайтесь не ронять и резко не стряхивать датчик. 2. Поддомкратьте автомобиль и установите его на подпорки. 3. Аккуратно отсоедините разъем электропроводки кислородного датчика. 4. При помощи специального ключа осторожно выверните зонд из соответствующей секции системы выпуска отработавших газов. 5. Перед вворачиванием датчика смажьте его резьбовую часть антиприхватывающим герметиком. 6. Вверните датчик на свое штатное место и прочно затяните его. 7. Опустите автомобиль на землю и подсоедините к датчику электропроводку. 8. Произведите автомобиля ходовые испытания. Проверьте память модуля управления на наличие кодов неисправностей.

И теперь несколько слов о брендах современных датчиков кислорода.Основные производители и отзывы о них можно посмотреть здесь по ссылкам:

Bosch avto.pro/makers/bosch/

Denso avto.pro/makers/denso/NGK avto.pro/makers/ngk/PROFIT avto.pro/makers/profit/

Материал о том КАК выбрать лямбда зонд -можно посмотреть здесь : avto.pro/autonews/kak_vib…at_lyambda_zond-20170315/

Продолжение о пятиконтактных датчиках тут:alflash.com.ua/laf.htm

Источник: moi-nissan.ru/ogo-go/672-…chik-o2-lyambda-zond.html© Автоклуб moi-nissan.ru

Page 2

Эту статью сохраняю скорей для себя и как пособие для тех, кто будет задавать такие частые вопросы по поводу датчиков кислорода (тема довольно актуальная).В предыдущей теме мы говорили о наших катализаторах (здесь : www.drive2.ru/l/1861652/). Теперь же узнаем больше и подробней о лямбда зондах:

Основные положения и функции Кислородного датчика :Теория.Жесткие экологические нормы во многих странах мира, стали диктовать количество выбросов вредных веществ, тем самым узаконили применение на автомобилях каталитических нейтрализаторов (в обиходе – катализаторы) – устройств, способствующих снижению содержания вредных веществ в выхлопных газах автомобилей с двигателем внутреннего сгорания. Катализатор — нужный и ответственный узел автомобиля, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси катализатор умрёт ( потеряет свои основные свойства и функции) очень быстро – для того чтобы, как можно дольше продлить его жизнь и приходит на помощь датчик кислорода, он же О2-датчик, он же лямбда-зонд (ЛЗ).

Название датчика происходит от греческой буквы L (лямбда), которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится 1 часть топлива (речь идет о объемном соотношении величин), L равна 1 (график 1). «Окно» эффективной работы катализатора очень узкое: L=1±0,01. Обеспечить такую точность возможно только с помощью систем питания с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда-зонда. Таким образом, Лямбда зонд создан и поставлен инженерами для информирования компьютера, инжекторного автомобиля об отклонении от нормы соотношения топливно воздушной смеси.

График 1. Зависимость мощности двигателя (P) и расхода топлива (Q) от коэффициента избытка воздуха (L)

Избыток воздуха в смеси измеряется весьма оригинальным способом ( причем этот способ не является обходным путем, а дает уверенно точные показания ) – определения в выхлопных газах содержания остаточного кислорода (О2). Поэтому лямбда-зонд и стоит в выпускном коллекторе перед катализатором. Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива. Таким образом, происходит регулировка не воздуха, а именно топлива, относительно воздуха, тем самым достигается максимальный процент сгорания топлива в цилиндрах, максимально эффективная работа катализатора, и как следствие максимальный крутящий момент двигателя автомобиля. Причем на большинстве современных моделях автомобилей имеется еще один лямбда-зонд, так же возможна установка дополнительных датчиков работающих в связке (например датчик температуры катализатора, расположен он на выходе катализатора). Этим достигается большая точность приготовления смеси и контролируется эффективность работы катализатора (рис. 1).

Рис. 1. Схема L-коррекции с одним и двумя датчиками кислорода двигателя 1 – впускной коллектор; 2 – двигатель; 3 – блок управления двигателем; 4 – топливная форсунка; 5 – основной лямбда-зонд; 6 – дополнительный лямбда-зонд; 7 – каталитический нейтрализатор.

Как работает Лямбда Зонд ( кислородный датчик )Лямбда-зонд действует по принципу гальванического элемента с твердым электролитом в виде керамики из диоксида циркония (ZrO2). Керамика легирована оксидом иттрия, а поверх нее напылены токопроводящие пористые электроды из платины. Один из электродов «дышит» выхлопными газами, а второй – воздухом из атмосферы (рис.2). Эффективное измерение остаточного кислорода в отработавших газах лямбда-зонд обеспечивает после разогрева до температуры 300 – 400оС. Только в таких условиях циркониевый электролит приобретает проводимость, а разница в количестве атмосферного кислорода и кислорода в выхлопной трубе ведет к появлению на электродах лямбда-зонда выходного напряжения.

Рис. 2. Схема датчика кислорода на основе диоксида циркония, расположенного в выхлопной трубе 1 – твердый электролит ZrO2; 2, 3 – наружный и внутренний электроды; 4 – контакт заземления; 5 – «сигнальный контакт»; 6 – выхлопная труба.

При пуске и прогреве холодного двигателя управление впрыском топлива осуществляется блоком управления автомобилем ( ЭБУ ) без участия этого датчика, а коррекция состава топливо-воздушной смеси осуществляется по сигналам других датчиков (положения дроссельной заслонки, температуры охлаждающей жидкости, числа оборотов коленвала и др.). Особенностью циркониевого лямбда-зонда является то, что при малых отклонениях состава смеси от идеального (0,97 < L < 1,03) напряжение на его выходе изменяется скачком в интервале 0,1 — 0,9 В (график 2). Таким образом этот материал обеспечивает идеальные показания сильно различные друг от друга даже при минимальном изменении измеряемой среды.

График 2. Зависимость напряжений лямбда-зонда от коэффициента избытка воздуха (L) при температуре датчика 500-800оС. А – условная точка средних показаний (Uвых » 0,5 В, при L=1,0). (Обогащение смеси (уменьшение О2 в выхлопе). Обеднение смеси (увеличение О2 в выхлопе).

График 2. Зависимость напряжений лямбда-зонда от коэффициента избытка воздуха (L) при температуре датчика 500-800оС. А – условная точка средних показаний (Uвых » 0,5 В, при L=1,0). (Обогащение смеси (уменьшение О2 в выхлопе). Обеднение смеси (увеличение О2 в выхлопе). Кроме циркониевых, существуют кислородные датчики на основе двуокиси титана (TiO2). При изменении содержания кислорода (О2) в отработавших газах они изменяют свое объемное сопротивление. Генерировать ЭДС титановые датчики не могут; они конструктивно сложны и дороже циркониевых, поэтому, несмотря на применение в некоторых автомобилях (Nissan, BMW, Jaguar), широкого распространения не получили. По мере развития автомобиле строения, так же ужесточаются и нормы экологических выбросов, таким образом мировые законодатели постоянно ужесточают экологические нормы. Это способствовало дальнейшему развитию лямбда зондов: для повышения чувствительности лямбда-зондов при пониженных температурах и после запуска холодного двигателя используют принудительный подогрев ( кислородные датчики с подогревом ) . Нагревательный элемент (НЭ) расположен внутри керамического тела датчика и подключается к электросети автомобиля (рис. 3).

Рис. 3. Конструкция датчика кислорода с подогревателем 1 – керамическое основание; 2, 8 – контакты НЭ; 3 – нагревательный элемент (НЭ); 4 – твердый электролит ZrO2 с напыленными платиновыми электродами; 5 – защитный кожух с прорезями; 6 – металлический корпус с резьбой крепления; 7 – уплотнительное кольцо; 9 – выводы датчика.

Принцип работы кислородного датчика на языке автомобилистов ( основные моменты):

Кислород содержит отрицательно заряженные ионы, которые собираются на платиновых электродах, и когда датчик достигает температуры около 400°C, любая разность потенциалов образует электрическое напряжение. В случае если смесь бедная, содержание кислорода в отработавших газах высокое. При сравнении с содержанием кислорода в атмосфере существует только очень маленькая разность потенциалов, и, как следствие, возникает небольшое напряжение (около 0,2–0,3 В). В случае если смесь богатая, то содержание кислорода в отработавших газах низкое. Создается большая разность потенциалов, поэтому возникает относительно более высокое напряжение (0,7–0,9 В). Система управления двигателем будет непрерывно подстраивать длительность импульсного сигнала под форсунки с целью выйти на среднее напряжение, составляющее около 0,4–0,6 В при значении лямбда около 1.0. Поскольку в процессе движения режимы работы двигателя постоянно изменяются, значение напряжения колеблется в обе стороны от среднего значения. Поэтому данный датчик в силу своей неспособности определить небольшие изменения в содержании кислорода известен как узкополосный. Датчик, установленный после каталитического нейтрализатора отработавших газов, действует по тому же способу, что и датчик перед ним, но с одним очень большим отличием. После того, как газы были обработаны каталитическим нейтрализатором, содержание кислорода в них остается на неизменном уровне. Это обеспечивает постоянное напряжение около 0,4–0,6 В. Теперь система управления двигателем может эффективно отслеживать работу каталитического нейтрализатора отработавших газов.

Если Лямбда Зонд «врет»

В этом случае ЭБУ начинает работать по усредненным параметрам, записанным в его памяти: при этом состав образующейся топливно-воздушной смеси будет отличаться от идеального. В результате появится повышенный расход топлива, неустойчивая работа двигателя на холостом ходу, увеличение содержания СО в отработавших газах, снижение динамических характеристик, но машина при этом остается на ходу. В некоторых моделях автомобилей ЭБУ реагирует на отказ лямбда-зонда очень серьезно и начинает так рьяно увеличивать количество подаваемого в цилиндры топлива, что запас горючего в баке «тает» на глазах, из трубы валит черный дым, СО «зашкаливает», а двигатель «тупеет» и на ближайшую СТО вам, скорее всего, придется добираться на буксире. Перечень возможных неисправностей лямбда-зонда достаточно большой и некоторые из них (потеря чувствительности, уменьшение быстродействия) самодиагностикой автомобиля не фиксируются.Поэтому окончательное решение о замене датчика можно принять только после его тщательной проверки, которую лучше всего поручить специалистам. Следует особо отметить, что попытки замены неисправного лямбда-зонда имитатором ни к чему не приведут – ЭБУ не распознает «чужие» сигналы, и не использует их для коррекции состава приготавливаемой горючей смеси, т.е. попросту «игнорирует». При сгоревшем или отключенном лямбда-зонде содержание СО в выхлопе возрастает на порядок: от 0,1 – 0,3% до 3 – 7% и уменьшить его значение не всегда удается, т. к. запаса хода винта качества смеси может не хватить. В автомобилях, система L-коррекции которых имеет два кислородных датчика, дело обстоит еще сложнее. В случае отказа второго лямбда-зонда (или «пробивки» секции катализатора) добиться нормальной работы двигателя практически невозможно. Вообще лямбда-зонд – наиболее уязвимый датчик автомобиля с системой впрыска. Его ресурс составляет 40 – 80 тыс. км в зависимости от условий эксплуатации и исправности двигателя. Плохое состояние маслосъемных колец, попадание антифриза в цилиндры и выпускные трубопроводы, обогащенная топливно-воздушная смесь, сбои в системе зажигания сильно сокращают срок его службы. Применение этилированного бензина категорически недопустимо – свинец «отравляет» платиновые электроды лямбда-зонда за несколько бесконтрольных заправок.

Рис. 4. Контактные выводы наиболее распространенных циркониевых лямбда-зондов а – без подогревателя; б, с – с подогревателем. * цвет вывода может отличаться от указанного.

В связи с тяжелыми условиями эксплуатации и минимальными значениями напряжения проблемы могут возникнуть очень легко. Зная, как работает датчик, вы получаете ключ к успешной диагностике кислородных датчиков. Контакт 1 — Нагреватель + Контакт 2 — Нагреватель — Контакт 3 — Сигнал напряжения Контакт 4 — Земля Обратите внимание, что все проверки сопротивления и непрерывности цепи необходимо выполнять при разъединенной цепи. Если у вас есть диагностический код неисправности, он даст вам некоторое представление о целостности цепи, но вы узнаете гораздо больше, если сами проведете испытание датчика. На датчике с четырьмя проводами два провода отвечают за нагревательный элемент, который предназначен для того, чтобы как можно быстрее довести температуру датчика до рабочей температуры 400°C. Самое простое, с чего можно начать, это проверить целостность цепи элемента нагревателя. Отключите датчик и измерьте сопротивление на контактах 1 и 2. Если оно лежит в пределах 5–30 Ом, проверьте сигнал, который поступает от электронного блока управления двигателем. Обычно он приводится в действие за счет сигнала модуляции длительности импульса (PWM), поступающего от электронного блока управления. Чтобы замерить воздействующий сигнал нагревателя, потребуется задействовать осциллоскоп. Следующий шаг — испытание самого датчика; сначала проверьте контакт между зажимом заземления 4 и землей. Если это возможно, исследуйте сигнал только после того, как двигатель достигнет рабочих условий, т.е. достаточно прогреется, и система управления начнет работать с замкнутым контуром. Сигнал должен переключаться между богатым и бедным состояниями ( с 0,2–0,3 В на 0,7–0,9 В); данное переключение должно происходить приблизительно каждую секунду. Если сигнал мал (среднее напряжение 0,3 В) или слишком велик (среднее напряжение 0,7 В), то, вероятно, датчик стал жертвой коррозии на платиновых электродах или загрязнения в отверстиях. Если автомобиль оснащен несколькими кислородными датчиками pre и post, можно получить более точную информацию. Используя данные двух или четырех каналов и накладывая сигналы, можно получить точные сведения о времени реакции и операционной/рабочей эффективности: сигналы от исправных датчиков должны быть зеркальным отражением друг друга».

Виды кислородных датчиков.

Существует несколько классификаций автомобильных кислородных датчиков: 1. По количеству проводов: 1-,2-,3-,4-,5-,6-контактные датчики. 2. По дизайну сенсорного элемента: “пальчиковые” и пластинчатые 3. По способу крепления в выхлопную трубу: резьбовые и фланцевые. 4. По ширине измерений лямбды: узкополосные (детектируют лямбду при величине >1) и широкополосные (детектируют лямбду от 0,7 до 1.6).

Одноконтактные датчики – имеют один сигнальный провод, по которому передаются генерируемые датчиком электрические импульсы.Двухконтактные датчики – имеют один сигнальный провод и один провод “на массу” (дублирует заземление через корпус датчика). Заземляющий провод позволяет более точно оценивать показания сигнального провода блоком управления двигателем.Трёхконтактные датчики – имеют один сигнальный провод, один провод “на массу” и один провод на нагревательный элемент. Эти датчики характеризуются следующими достоинствами: 1. Короткое время достижения датчиком рабочей температуры (более 350 градусов) вследствие чего снижается количество вредных выбросов при работе холодного двигателя; 2. увеличивается срок службы датчика, так как у нагреваемых датчиков изменение температуры происходит, более плавно, чем у датчиков без нагревательного элемента; 3. датчики, снабжённые нагревательным элементом, имеют менее строгие требования к месторасположению в выхлопной системе, что упрощает их техобслуживание. Мощность нагревательного элемента в кислородном датчике составляет либо 12Вт, либо 18Вт. Следует учитывать, что установка датчика с неправильно подобранной мощностью нагревательного элемента может привести к перегреву датчика и быстрому выходу его из строя.Четырёхконтактные датчики – обязательно имеют один сигнальный провод, один питающий на нагревательный элемент и один заземляющий провод. Функция последнего провода может быть различной и зависит от особенностей устройства системы управления конкретным двигателем. Четвёртый провод может быть либо ещё одним заземляющим (в случаях, когда заземление через корпус датчика не предусмотрено), либо питающим проводом для второго нагревательного элемента. Следует учитывать, что при ошибочной установки датчика с заземлением на корпус вместо датчика без заземления на корпус или наоборот может привести к тому, что блок управления двигателем не распознает сигналы, поступающие с кислородного датчика.Взаимозаменяемость. Рекомендованный заводом-изготовителем лямбда-зонд и сходные по конструкции циркониевые датчики взаимозаменяемы. Возможна замена не подогреваемых датчиков на подогреваемые (но не наоборот!). Однако при этом может возникнуть проблема несовместимости разъемов и отсутствия в машине цепи питания для нагревателя лямбда-зонда. Недостающие провода можно проложить самостоятельно, а вместо разъема использовать стандартные автомобильные контакты. Цветовая маркировка выводов лямбда-зондов может различаться, но сигнальный провод всегда будет иметь темный цвет (обычно – черный). «Массовый» провод может быть белым, серым или желтым (рис. 4). Титановые лямбда-зонды от циркониевых легко отличить по цвету «накального» вывода подогревателя – он всегда красный. При замене 3-контактного лямбда-зонда на 4-контактный необходимо надежно соединить с «массой» автомобиля провод заземления подогревателя и сигнальный «минус», а накальный провод подогревателя через реле и предохранитель подключить к «плюсу» аккумулятора. Подключение напрямую к катушке зажигания нежелательно, т. к. в цепи ее питания может стоять понижающее сопротивление. Подключиться к контактам топливного насоса достаточно сложно. Лучше всего подключить реле подогревателя лямбда-зонда к замку зажигания.

Расположение Кислородного датчика Ниссан :Кислородный датчик расположен на выпускном тракте двигателя. Если это рядный двигатель — то кислородный датчик расположен непосредственно на чугунном выпускном коллекторе, если же это V — образный двигатель или иной двигатель не с единым выпускным коллектором, то кислородный датчик располагается в месте схождения основных отводов выпускных коллекторов.

Почему следует заменить неисправный кислородный датчик?Замена неисправного кислородного датчика на новый датчик позволяет экономить топливо, улучшить динамику автомобиля, уменьшить токсичность выхлопных газов, является профилактикой преждевременного выхода из строя дорогостоящего катализатора.

Инструкция по замене, универсальная: Чтобы снять старый и установить новый кислородный датчик нужно убедиться в том, что зажигание выключено, а провода датчика отсоединены. Перед установкой нового зонда проверяют его маркировку на соответствие указанной в инструкции по эксплуатации, осматривают автомобиль на отсутствие механических повреждений, наличие кольца уплотнения, противопригарной смазки на резьбовой части. Затем датчик кислорода затягивают до полностью герметичного соединения, соединяя электроразъем, после чего можно проверять работоспособность нового датчика. Иногда датчик кислорода присоединяется к трубопроводу специальной пластиной, в пространстве между ней и трубопроводом находится прокладка с функцией герметика. Проверка работоспособности датчика производится только при его нагреве до температуры 350 градусов специальным оборудованием: газоанализатором, осциллографом, вольтметром, омметром. Поэтому сделать правильную замену кислородного датчика на Nissan и других автомобилях можно лишь в специализированном автосервисе.

Восстановление кислородного датчика : Проблема всех легковых автомобилей в России является завышенный расход бензина на подержанных автомобилях. Главной причиной этого не качественное топливо, которое загрязняет систему автомобиля, и в первую очередь лямбда зонт, в простонародье называют кислородным датчиком, который находиться на каталитическом нейтрализаторе(система очистки отработанных газов) Если отказ лямбда-зонда (ЛЗ) не вызван необратимыми изменениями в структуре его основы – слое циркониевой керамики, то датчик можно попробовать «оживить». Дело в том, что рабочая поверхность ЛЗ под защитным колпачком со временем покрывается нагаром и свинцовыми отложениями выхлопных газов. Датчик начинает «врать». Если этот налет удалить, то работоспособность ЛЗ восстанавливается. Поверхность датчика не позволяет производить ее чистку механическим способом (абразивной шкуркой или надфилем), т. к. вместе с нагаром с керамической основы неизбежно удаляются слои платинового напыления. Этот датчик отвечает за качество топливной смеси, ну и соответственно если он загрязнен, сигнал на компьютер автомобиля не будет соответствовать норме. тем самым машинка начинает кушать много бензина, покупка нового датчика сильно бьет по бюджету, его цена иногда доходит до 30 тысяч рублей в зависимости от марки автомобиля. И так оживляем!

Инструкция 1:1шаг Безопасно очистить ЛЗ можно, промыв его в ортофосфорной кислоте, которая за 10 – 20 мин. разъедает загрязнения, не трогая платиновые электроды. Перед промывкой датчик надо вскрыть. Для этого на токарном станке тонким резцом аккуратно, у самого основания отрезают защитный колпачок, изготовленный из нержавеющей стали. Использовать для этих целей ножовку по металлу нельзя – ею можно повредить керамическое тело датчика.2шаг Процедуру очистки можно ускорить, используя тонкую кисточку из натуральной щетины. Кисточкой осторожно наносят ортофосфорную кислоту, равномерно омывая, керамический стержень ЛЗ со всех сторон. Не следует погружать датчик в кислоту целиком – моется только его рабочая часть. По мере очищения черно-коричневая поверхность стержня приобретает стальной оттенок: это блестит платина, запыленная на керамику основы. После очистки датчик хорошо промывают водой и высушивают, а защитный колпачок крепят на место с помощью аргоновой сварки. Если под рукой нет необходимого оборудования, то колпачок можно не срезать. Вместо этого в нем с помощью напильника делают два «окошка» шириной 3 – 4 мм и через них с помощью такой же кисточки промывают датчик кислотой.

3шаг Восстановленный датчик завинчивают на свое место в машине, предварительно проверив состояние уплотнительного кольца. Промывку ЛЗ можно производить многократно, по мере его загрязнения. Если «реанимация» все же не принесла ожидаемых результатов, это значит, что датчик кислорода вышел из строя окончательно и вам ничего не остается, как идти в магазин за новым «информатором».

Инструкция 2:1. Выворачивание l-зонда на холодном двигателе может оказаться крайне затруднительным ввиду теплового сжатия металла выпускного коллектора/трубы системы выпуска. Во избежание риска повреждения компонентов, прежде чем приступать к снятию датчика, прогрейте двигатель в течение пары минут, — постарайтесь не обжечься о разогретые поверхности в процессе выполнения процедуры:a) Кислородные датчики оборудованы вмонтированным жгутом электропроводки с контактным разъемом. Повреждение данного жгута приводит к необратимому выходу датчика из строя, — соблюдайте осторожность; b) Старайтесь не допускать попадания на контактный разъем и жалюзи датчика масла, смазки, грязи, влаги и т.п.;c) НИ в коем случае не применяйте для чистки датчика никакие растворители;

d) Старайтесь не ронять и резко не стряхивать датчик. 2. Поддомкратьте автомобиль и установите его на подпорки. 3. Аккуратно отсоедините разъем электропроводки кислородного датчика. 4. При помощи специального ключа осторожно выверните зонд из соответствующей секции системы выпуска отработавших газов. 5. Перед вворачиванием датчика смажьте его резьбовую часть антиприхватывающим герметиком. 6. Вверните датчик на свое штатное место и прочно затяните его. 7. Опустите автомобиль на землю и подсоедините к датчику электропроводку. 8. Произведите автомобиля ходовые испытания. Проверьте память модуля управления на наличие кодов неисправностей.

И теперь несколько слов о брендах современных датчиков кислорода.Основные производители и отзывы о них можно посмотреть здесь по ссылкам:

Bosch avto.pro/makers/bosch/

Denso avto.pro/makers/denso/NGK avto.pro/makers/ngk/PROFIT avto.pro/makers/profit/

Материал о том КАК выбрать лямбда зонд -можно посмотреть здесь : avto.pro/autonews/kak_vib…at_lyambda_zond-20170315/

Продолжение о пятиконтактных датчиках тут:alflash.com.ua/laf.htm

Источник: moi-nissan.ru/ogo-go/672-…chik-o2-lyambda-zond.html© Автоклуб moi-nissan.ru

www.drive2.ru


Смотрите также

     ico 3M  ico armolan  ico suntek  ico llumar ico nexfil ico suncontrol jj rrmt aswf