logo1

logoT

 

Передача крутящего момента


Способы передачи крутящего момента

Подробности Категория: Передача крутящего момента Просмотров: 3085

Способы передачи крутящего момента.

Различают два основных способа передачи крутящего момента — жесткий и фрикционный. При первом способе крутящий момент передается жесткими элементами, работающими на срез, изгиб или смятие; при втором — силами трения, возбуждаемыми на цилиндрических, конических или торцовых поверхностях вала.

Главные виды жестких соединений: шпоночные (рис. 551, виды 1, 2) шлицевые (виды 3, 4), призматические (вид 5), профильные (вид 6), штифтовые (виды 7, 8), фланцевые (виды 9—11).

К фрикционным относятся соединения: с натягом (вид 12), конусные (вид 13), с пружинными затяжными кольцами (виды 14, 15), клеммные (вид 16).

Применяют также сочетание обоих способов. Нагружаемость жестких соединений увеличивают введением трения путем осевой (вид 3) или радиально-осевой затяжки (вид 4).

Для страховки от провертывания, а также для фиксации деталей в определенном угловом положении в фрикционные соединения вводят жесткие элементы, например, шпонки (виды 17—19).

Конструирование узлов передачи крутящего момента

Глава 11

Различают два основных способа передачи крутящего момента - жесткий и фрикционный. При первом способе крутящий момент передается жесткими элементами, работающими на срез, изгиб или смятие, при втором — силами трения, возбуждаемыми на цилиндрически конических или торцовых поверхностях вала.

Главные виды жестких соединений: шпоночные (рис.11.1, виды 1, 2 шлицевые (виды 3, 4), призматические (вид 5), профильные (вид 6), штифтовые (виды 7, 8), фланцевые (виды 9 — 11).

К фрикционным относятся соединения прессовые (вид 12), конусные (вид 13), соединения пружинными затяжными кольцами (виды 14, 15), клеммные (вид 16).

Применяют также сочетание обоих способов. Нагружаемость жестких соединений увеличивают введением трения путем осевой (вид 3) или радиально-осевой затяжки (вид 4).

Для страховки от провертывания, а также для фиксации деталей в определенном угловом положении во фрикционные соединения вводят жесткие элементы, например шпонки (виды 17-19).

Рис. 11.1.

Передача крутящего момента.

11.1 Шпоночные соединения

Шпонки используют в малонагруженных соединениях, преимущественно в изделиях мелкосерийного производства. Недостатки шпоночных соединений: малая несущая способность, ослабление вала шпоночным пазам; концентрация напряжения из-за неблагоприятной формы шпоночных пазов; низкая технологичность.

Особенно резко шпонки ослабляют полые валы, у которых отношение диаметра отверстия к диаметру вала d/D > 0,6. Применение силовых шпонок на таких валах почти исключается.

В крупносерийном и массовом производстве в ответственных соеди­нениях, нагруженных большими крутящими моментами, работающих при циклической нагрузке, шпоночные соединения уступили место более совер­шенным шлицевым соединениям.

Все основные виды шпонок можно разделить на клиновые и приз­матические. Первая группа шпонок образует напряженные, а вторая — ненапряженные со­единения. Размеры шпо­нок и допуски на них стандартизованы.

Соединение клиновыми шпонками (например, врез­ной клиновой шпонкой — рис. 11.2) характеризуется свободной посадкой ступи­цы на вал (с зазором); расположением шпонки в пазе с зазорами по боковым граням (ра­бочими являются широ­кие грани шпонки); передачей вращающего момента от вала к ступице в основном силами трения, которые образуются в соединении от запрессовки шпонки. Запрессовка шпонки смещает

Рис. 11.2. Установка клиновой шпонки центры вала и ступицы на некоторое значение ∆, равное половине зазора посадки и деформации деталей. Это смещение вызывает дисбаланс и неблагоприятно сказывается на работе механизма при больших частотах вращения.

Рис. 11.3. Установка забивных шпонок с головками.

Кроме того, при установке клиновых шпонок с торца вала по технике безопасности необходимо скрыть головку шпонки, как показано на рис. 11.3. Часто также требуется индивидуальная пригонка шпонки по пазу. Эти недостатки привели к довольно ограниченному применению клиновых шпонок в современном машиностроении.

Соединение призматическими шпонками ненапряженное. Оно тре­бует изготовления вала и отверстия с большой точностью. Во многих случаях посадка ступицы на вал производится с натягом. Момент передается с вала на ступицу боковыми узкими гранями шпонки. При этом на них возникают напряжения смятия , а в продольном сечении шпонки напряжения среза (рис. 11.4).

Для упрощения расчета допускают, что шпонка врезана в вал на половину своей высоты, напряжения распределяются равно­мерно по высоте и длине шпонки, а плечо равнодействующей этих напряжений равно ~ d/2. Рассматривая равновесие вала или ступицы при этих допущениях, получаем условия прочности в виде:

, (11.1)

(11.2)

У стандартных шпонок размеры b и h подобраны так, что нагрузку соединения ограничивают не напряжения среза, а напряжения смя­тия. Поэтому при расчетах обычно используют только формулу (11.1).

Рис. 11.4.

Параллельность граней призматической шпонки позволяет осу­ществлять подвижные в осевом направлении соединения ступицы с валом (коробки скоростей и др.).

Силы трения, возникающие при перемещении ступицы в подвижном соединении, могут нарушить правильное положение шпонки, поэтому ее рекомендуют крепить к валу

Рис. 11.5. винтами (рис. 11.5, а). В некоторых конструкциях подвижных соединений целесообразно применять короткие шпонки, прикреплен­ные к ступице (рис. 11.5, б).

Рис. 11.6.

Рис.11.7

Сегментная и цилиндрическая шпонки являются разновидностью призматической шпонки, так как принцип работы этих шпонок по­добен принципу работы призматической шпонки. Конструкция соединения с помощью сегментной шпонки показана на рис. 11.6.

Глу­бокая посадка шпонки обеспечивает ей более устойчивое положение, чем у простой призматической шпонки. Однако глубокий паз значи­тельно ослабляет вал, поэтому сегментные шпонки применяют главным образом для закрепления деталей на малонагруженных участ­ках вала, например на концах валов. Аналогично соединению с приз­матической шпонкой для сегментной шпонки получим :

(11.3) .

При длинных ступицах можно ставить по оси вала две сегментные шпонки.

Конструкция соединения с цилиндрической шпонкой (штифтом) показана на

рис. 11.7. Цилиндрическую шпонку используют для за­крепления деталей на конце вала. Отверстие под шпонку сверлят и обрабатывают разверткой после посадки ступицы на вал. При больших нагрузках ставят две или три цилиндрические шпонки, располагая их под углом 180 или 1200.

Таблица 11.1

Размеры призматических шпонок по ГОСТ 23360-80 (с сокращениями).

Для повышения несущей способности и более надёжной фиксации ступицы на вале используют тангенциальные шпонки, как показано на рис. 11.8.

Рис. 11.8. Тангенциальные шпонки.

Рекомендуются следующие посадки призматических шпонок по боковым граням паза ступицы: с зазором (Н9/h9- для центрирующих соединений; D9/h9 – для подвижных соединений) или переходные и с натягом (Js9/h9, N9/h9, P9/h9 для циклически нагруженных соединений).

Ступицы сажают на вал обычно по посадке H7/h6. В соединениях, подвергающихся циклическим нагрузкам предпочтительны посадки H7/js6, H7/k6, H7/m6, H7/p6.

Дополнительную несущую способность придаёт шпоночным соединениям осевая затяжка ступицы к бурту вала. Возникает сила трения между буртом вала и ступицей, но важнее – соединение меньше подвержено разбалтыванию при циклических нагрузках.

Рис. 11.9.

На рис. 11.9 показаны варианты силовой затяжки шпоночных соединений.

Наиболее сильную затяжку обеспечивают кольцевые гайки (рис 11.9, а). Затяжка шпонки нажимным винтом (вид б) недостаточна. Затяжка на шпонку, наклонно установленную в валу (вид в), вызывает децентровку соединения и повышение разрывающих напряжений в ступице.

На конусных валах шпонку устанавливают параллельно оси вала (вид г) или параллельно образующей конуса (вид д) Второй способ усложняющий обработку наклонных пазов в ступице и на валу, применяют только при длинных или крутых конусах (конусность К > 1: 10), при установке параллельно ■ оси кромки шпонки выходят из пазов на валу и в ступице. Проще в таких случаях применять шпонки увеличенной высоты.

На рис. 11.10 показаны конструктивные разновидности осевой затяжки.

Рис. 11.10.

В концевых установках чаще всего применяют кольцевые гайки, затя­гивающие насадную деталь непосредственно (вид а), через шайбы (вид б) или дистанционные втулки (вид в). Таким же способом затягивают детали в промежуточных установках (вид г).

Затяжка шестигранными гайками, установленными на хвостовике вала (вид д), увеличивает осевые размеры конструкции.

В полых валах применяют внутренние гайки (виды е - з), сила затяжки которых несколько меньше, чем кольцевых. Еще слабее затяжка центральным болтом (вид и) или несколькими смещенными с центра болтами (вид к).

На видах л, м представлена затяжка через центрированные шайбы. Конструкция м предпочтительнее, если необходимо уменьшить осевые га­бариты.

Для облегчения разборки, особенно в соединениях с напряженными посадками, а также в конусных соединениях, вводят съёмные устройства, например гайки с дифференциальной резьбой (вид н). В конструкции о гайка при отвертывании снимает ступицу упором в кольцевой стопор 1.

Date: 2015-07-23; view: 1712; Нарушение авторских прав

Что такое крутящий момент двигателя автомобиля и как его увеличить

Крутящий момент – качественный показатель, характеризующий силу вращения коленчатого вала автомобиля.

Его измерение производится в ньютон-метрах (н*м). От показателя КМ зависят тяговые характеристики ДВС и динамика разгона транспортного средства.

Важно: ошибкой было бы называть крутящий момент вращающим, как это делают некоторые источники в Сети. Термин «крутящий» подразумевает внутреннюю силу, приводящую к вращению. Под словом «вращающий» подразумевается наружная сила. Так, крутящей является сила, приводящая в движение коленчатый вал. Вращающей – сила пальцев, в которых крутят карандаш.

Если простым языком отвечать на вопрос, что такое крутящий момент двигателя, то можно сказать, что КМ – сила, с которой агрегат крутит выходной вал. Например, при КМ, равном 130 Н*м и длине выходного вала 1 метр на его конец можно повесить груз весом 13 кг. При этом мотор должен провернуть вал.

Непосредственное отношение к понятию КМ имеет показатель мощности. Мощность и крутящий момент неразрывно связаны, так как одно вытекает из другого. График КМ растет только совместно с графиком мощности.

Мощность определяется количеством работы, которую мотор способен выполнять за единицу времени. Измеряется в лошадиных силах или киловаттах. При этом первая единица измерения является неофициальной, но более популярной. Вторая – официальной, но используемой только в документах.

Показатель КМ двигателя автомобиля напрямую зависит от:

Мощность двигателя определяется по формуле P=M*N, где P это мощность, М – крутящий момент, N – обороты двигателя. Соответственно, расчитать КМ можно по формуле M = P/N.

При проведении подсчетов необходимо использовать официальные единицы измерения, зарегистрированные в СИ (Н*м, ватты, радианы в секунду). Реальное измерение крутящего момента производится на специальном стенде в лабораторных условиях.

Передача КМ к ведущим колесам

Появления КМ в результате сгорания топлива недостаточно для начала движения. Момент должен быть передан к ведущим колесам транспортного средства.

Передача выработанного крутящего момента осуществляется посредством трансмиссии – коробки передач, валов, ШРУСов, заднего редуктора, раздаточной коробки. Наличие тех или иных элементов трансмиссии зависит от типа привода автомобиля. В процессе движения водитель имеет возможность изменять КМ, передаваемый от двигателя к колесам. Чтобы добиться этого, необходимо увеличивать или уменьшать количество оборотов силового агрегата. Подобные манипуляции без потерь в скорости движения совершаются с помощью коробки передач.

Важно: коробка переключения передач – устройство, предназначенное для изменения частоты вращения и КМ на двигателях, не обладающих достаточной приспособляемостью. Сегодня в автомобильной промышленности применяются механические, гидромеханические, электромеханические и автоматические КПП.

В процессе передачи крутящего момента его показатель может уменьшаться вследствие механических потерь. Передающееся усилие ослабевает по причине трения элементов мотора и трансмиссии друг об друга, сопротивления материалов, из которых изготовлены детали автомобиля и других факторов воздействия.

Максимальный и номинальный КМ

В механике существует понятие о максимальном и номинальном КМ.

Максимальный крутящий момент – самый большой показатель КМ, который двигатель может развить.

Известно, что момент не является постоянной величиной. Его показатель растет совместно с ростом оборотов.

Однако на определенном этапе поток воздуха, поступающий в цилиндры, начинает оказывать столь высокое сопротивление, что разрежения, создаваемого поршнем, становится недостаточно для всасывания достаточного количества топливовоздушной смеси. При этом ухудшается вентиляция цилиндров, и рост к/м прекращается.

На автомобилях ВАЗ-2110 с мотором 21114 максимальный показатель КМ достигается на 3 тысячах оборотов в минуту. Дальнейшее увеличение частоты работы силового агрегата приводит к росту мощности. При этом крутящий момент снижается.

На что влияет подобное явление? Автомобиль, работающий в мощностном режиме, способен легко преодолевать подъемы, тащить тяжелый прицеп, другой автомобиль. При этом динамика разгона даже не загруженного ТС будет существенно снижена.

Номинальный крутящий момент – показатель КМ, который двигатель выдает без дополнительной нагрузки, работая в нормальном режиме.

Как увеличить КМ

Как увеличить крутящий момент двигателя? Увеличение КМ осуществляется практически аналогично увеличению такого показателя, как мощность двигателя. Для этого необходимо произвести доработку самого мотора или его агрегатов.

  • Замена распределительных валов, системы выпуска, фильтров на высокопроизводительные аналоги;
  • Повышение пропускных возможностей впускного клапана или турбирование. Это дает возможность улучшить вентиляцию цилиндров;
  • Коррекция фаз газораспределения с увеличением времени открытия впускных клапанов;
  • Увеличение степени сжатия. Данный способ позволяет значительно повысить КМ, однако сопровождается существенными техническими трудностями.
  • Замена поршней более легкими аналогами. Двигателю будет легче крутиться. Соответственно, динамика разгона вырастет.

Увеличения динамики разгона можно добиться и путем коррекции механизма передачи крутящего момента к ведущим колесам. Для этого необходимо установить в коробку передач шестерни с большим передаточным числом. Следует помнить, что увеличение КМ будет означать снижение максимальной скорости авто.

Увеличения динамики разгона можно добиться и с помощью чип-тюнинга. При этом заводская программа с блока управления двигателем заменяется на альтернативную, изменяющую параметры работы силового агрегата в ту или иную сторону.

Фланцевые соединения для передачи крутящего момента

Подробности Категория: Фланцевые соединения Просмотров: 1825

Фланцевые соединения для передачи крутящего момента.

Фланцевые соединения применяют преимущественно для соединения валов (рис. 623, а), а также для крепления на валах деталей дискового (вид б) и барабанного (вид е) типа.

Крутящий момент передается призонными болтами или специальными элементами, работающими на срез и смятие, а отчасти силами трения, возникающими на стыковых поверхностях при затяжке стяжных болтов.

Соосность соединяемых деталей достигается центрирующей выточкой m (рис. 623, б) и строгой перпендикулярностью стыковых поверхностей относительно осей соединяемых деталей.

Увеличение диаметра расположения элементов, передающих крутящий момент, уменьшает окружную силу и дает возможность увеличить число элементов.

Преимуществом фланцевых соединений является практически беззазорная передача крутящего момента, достигаемая посадкой призонных болтов с натягом. Силы трения, возникающие на стыке при затяжке болтов, предупреждают микросмещения сопрягающихся поверхностей, поэтому фланцевые соединения почти не подвержены наклепу, свариванию и фрикционной коррозии, которые часто встречаются в ступичных соединениях.

Крутящий момент, передаваемый фланцевым соединением, определяется сопротивлением болтов срезу и силой трения на стыке:

где D — диаметр окружности расположения центров болтов; z1 и d1 — соответственно число и диаметр призонных болтов; z2 и d2 — соответственно число и диаметр стяжных болтов; [τ] и [σ] — соответственно допустимые напряжения среза и растяжения болтов; f — коэффициент трения на стыке соединения (f = 0,10—0,15).

Отношение

представляет долю крутящего момента, передаваемого трением.

Если все болты призонные (z2 = 0) и напряжение среза равно напряжению растяжения в болтах [τ] = [σ], то

и при f = 0,1 равно 10%.

При расчете фланцевых соединений силу трения обычно не учитывают, относя ее в запас надежности работы соединения. Предполагая, что все болты являются призонными, находим из уравнения (168) диаметр расположения болтов

где z и d — число и диаметр болтов, мм; Мкр — крутящий момент, Н·м.

Максимальное число болтов, которые можно разместить на фланце,

где tmin — минимальный шаг болтов, допустимый из условия завертывания гаек (рис. 624, а).

Для шестигранных гаек при затяжке их торцовым ключом tmin ≈ 2,5d, а ключом с открытым зевом tmin ≈ 3d.

При ограниченных радиальных размерах с целью увеличения числа стяжных болтов фланцы стягивают инертными болтами (рис. 624, б), располагая их головки по разным сторонам фланца в шахматном порядке. При этом расстояние между осями болтов можно сократить до tmin ≈ 1,8d.

В наиболее общем случае затяжки гаек ключами с открытым зевом (tmin ≈ 3d) предельное число болтов

Подставляя это выражение в формулу (169), получаем минимальный из условия размещения болтов диаметр фланца

Минимальный диаметр равен диаметру Dв вала плюс двойное расстояние s от поверхности вала до осей болтов. Принимая s = 1,25d, получаем

Приравнивая выражения (171) и (172), получаем формулу для определения диаметра d болтов, при котором диаметр D фланца получается наименьшим:

Диаметр вала Dв зависит от условий его нагружения.

На основании формулы (173) составлена номограмма (рис. 625) для определения минимальных размеров фланцевого соединения.

Пусть Мкр = 10 кН·м, [τ] = 100 МПа и Dв = 100 мм. Восстанавливаем перпендикуляр из точки Мкр = 10 кН·м на оси абсцисс и из точки пересечения с линией [τ] = 100 МПа проводим горизонтальную линию, точка встречи которой с ординатой Dв = 100 мм дает значение d = 14 мм. Соответствующая величина Dmin = 135 мм (тонкие линии). Число болтов согласно формуле (170)

При конструировании фланцев не всегда исходят из условия наиболее компактного размещения болтов. В общем случае бывает задан только крутящий момент, требуется определить параметры фланцевого соединения, обеспечивающие передачу момента. Задача не имеет однозначного решения. Диаметр фланца, число и диаметр болтов — независимые переменные; существует большое число сочетаний этих параметров, удовлетворяющих условию прочности.

Расчет ведут по формуле (169). Для облегчения расчета составлена номограмма (рис. 626).

Пусть Мкр = 10 кН·м, [τ| = 100 МПа. Восстанавливаем перпендикуляр из точки Мкр = 10 кН·м и через точку встречи с линией [τ] = 100 МПа проводим горизонтальную линию через сетку линий в левой верхней части графика. Жирные линии указывают диаметр болтов, тонкие — предельное для данного диаметра болтов число болтов zпp согласно формуле (170).

На рис. 626 показано построение для d = 14 мм. В точке встречи горизонтали с линией d = 14 читаем предельное значение zпр = 10. Проводя вертикаль до пересечения с сеткой линий z (нижняя левая часть диаграммы), находим на оси ординат следующие значения:

Следует избегать крайних значений ряда. При больших z усложняется конструкция и уменьшается предельный диаметр вала (третья строка таблицы), равный по формуле (172) Dв max = D – 2,5d, при малых — увеличивается наружный диаметр фланца, который для средних условий можно принять равным Dн = D + 2,5d (четвертая строка). В рассматриваемом случае целесообразно принять z = 8.

Толщину фланца на участке расположения болтов определяют из условия жесткости фланца и прочности болтов на смятие. Напряжение смятия

где b — толщина фланца (рис. 627).

Напряжение среза в болтах

Деля почленно уравнения (174) и (175), получаем

Полагая [τ] = [σсм] и учтивая сокращение рабочей длины болтов из-за наличия резьбы и канавки m на участке перехода стержня болта в головку, обычно принимают

Толщину фланца на участке перехода в силовой пояс делают b' ≈ 0,8b, а на участке перехода в вал b'' = (0,15—0,2)Dв.

Типичные формы фланцев малого диаметра показаны на рис. 628, a—г. Фланцы большего диаметра делают коническими (вид д); участок перехода в вал усиливают плавной галтелью m и поясом жесткости n.

Для увеличения жесткости, особенно при наличии изгибающих сил и моментов, фланцам придают чашечную (вид е), конусную (вид ж) или тюльпановидную (вид з) форму.

Стыковые поверхности фланцев обрабатывают до параметров шероховатости Ra = 032—1,25 мкм с соблюдением перпендикулярности осей в пределах, зависящих от требуемой точности направления (торцовое биение в среднем 0,01—0,03 мм на 100 мм радиуса).

Отверстия под призонные болты обрабатывают совместно или по кондуктору с последующим совместным развертыванием под посадки Н7/m6 или Н7/k6. Для обеспечения сборки фланцев в положении, при котором производилась совместная обработка, устанавливают контрольные штифты или одно из отверстий располагают под углом, отличающимся от угла расположения остальных отверстий.

Призонные болты изготовляют из углеродистых сталей 45, 50 или легированных 40Х и термически обрабатывают на твердость HRC 30—45 (закалка со средним отпуском).

Болты рассчитывают на срез окружной силой и растяжение силой предварительной затяжки. Эквивалентное напряжение в опасном сечении (плоскость среза) по третьей теории прочности

где σр и τ — соответственно напряжения растяжения и среза.

Обычно принимают σр = 100 МПа и τ = 50—100 МПа. Эквивалентное напряжение

Помимо цилиндрических призонных болтов (рис. 629, а, б), применяют конические (вид в). Конические болты не обеспечивают стяжку фланцев, вследствие чего их чередуют с обычными стяжными болтами.

Крутящий момент передают также с помощью штифтов (виды г, д), располагаемых в промежутках между стяжными болтами. Для уменьшения габаритов элементы, работающие на срез, выполняют в виде втулок, устанавливаемых концентрично со стяжными болтами (виды е—к). Прочное соединение обеспечивает конструкция (к) с коническими болтами, затяжка которых раздает втулки и обеспечивает плотное прилегание их к стенкам отверстий на участке среза.

На виде (л) представлен пример передачи крутящего момента в многофланцевом соединении с помощью призонных болтов, а на виде (м) — комбинированным способом с помощью призонных болтов и втулок.

Дли передачи больших крутящих моментов применяют радиальные (чаше всего эвольвентные) шлицы (вид н) или торцовые шлицы треугольного профиля (рис. 630).

При расчете на срез основанию шлицев крутящий момент, передаваемый шлицами,

где D — средний диаметр шлицевого пояса, мм; l — ширина пояса шлицев, мм; [т] — допускаемое напряжение среза, МПа.

Для призонных плотно расположенных болтов по формуле (171)

Отношение крутящих моментов при передаче шлицами и болтами

Для радиальных шлицев (см. рис. 629, н), когда l = b, при обычной толщине фланца b = d

Для торцовых шлицев при l = 2,5d (рис. 630, а)

Следовательно, несущая способность фланцев с радиальными шлицами примерно в 4 раза, а с торцовыми — в 10 раз больше, чем фланцев с плотно расположенными призонными болтами.

В соединениях, нагруженных не слишком большими силами, протяженность торцовых шлицев обычно сокращают, выполняя их отдельными секторами на участках расположения стягивающих болтов (вид б) или между ними (вид в), или уменьшая высоту шлицевого пояса (виды г, д).

Размеры шлицевых участков определяют из условия

где F — суммарная площадь шлицевых участков; Rср — средний радиус их расположения; [τ] — допустимое напряжение среза в шлицах.

Стяжные болты фланцев с торцовыми шлицами нагружены, кроме силы предварительной затяжки, также осевой силой, возникающей при передаче крутящего момента вследствие наклона рабочих граней шлицев, равной

где α — угол при вершине профиля шлицев в среднем сечении.

При обычном значении α = 60°


Смотрите также

     ico 3M  ico armolan  ico suntek  ico llumar ico nexfil ico suncontrol jj rrmt aswf