logo1

logoT

 

Работа дизельного двигателя


Дизельный двигатель: устройство и схема работы

Дизельный двигатель – двигатель внутреннего сгорания, изобретенный Рудольфом Дизелем в 1897 году. Устройство дизельного двигателя тех лет позволяло использовать в качестве топлива нефть, рапсовое масло, и твердые виды горючих веществ. Например, каменноугольную пыль.

Принцип работы дизельного двигателя современности не изменился. Однако моторы стали более технологичными и требовательными к качеству топлива. Сегодня в дизелях используется только высококачественное ДТ.

Моторы дизельного типа отличаются топливной экономичностью и хорошей тягой при низких оборотах коленвала, поэтому получили широкое распространение на грузовых автомобилях, кораблях и поездах.

С момента решения проблемы высоких скоростей (старые дизели при частом использовании на высоких скоростях быстро выходили из строя) рассматриваемые моторы стали часто устанавливаться на легковые авто. Дизели, предназначенные для скоростной езды, получили систему турбонаддува.

Принцип работы двигателя Дизеля

Принцип действия мотора дизельного типа отличается от бензиновых моторов. Здесь отсутствуют свечи зажигания, а топливо подается в цилиндры отдельно от воздуха.

Цикл работы такого силового агрегата можно представить в следующем виде:

  • в камеру сгорания дизеля подается порция воздуха;
  • поршень поднимается, сжимая воздух;
  • от сжатия воздух нагревается до температуры около 800˚C;
  • в цилиндр впрыскивается топливо;
  • ДТ воспламеняется, что приводит к опусканию поршня и выполнению рабочего хода;
  • продукты горения удаляются с помощью продувки через выпускные окна.

От того, как работает дизельный двигатель, зависит его экономичность. В исправном агрегате используется бедная смесь, что позволяет сэкономить количество топлива в баке.

Как устроен дизельный двигатель

Основным отличием конструкции дизеля от бензиновых моторов является наличие топливного насоса высокого давления, дизельных форсунок и отсутствие свечей зажигания.

Общее устройство этих двух разновидностей силового агрегата не различается. И в том, и в другом имеются коленчатый вал, шатуны, поршни. При этом у дизельного мотора все элементы усилены, так как нагрузки на них более высокие.

На заметку: некоторые движки дизельного типа имеют свечи накаливания, которые ошибочно принимаются автолюбителями за аналог свечей зажигания. На самом деле, это не так. Свечи накаливания используются для нагрева воздуха в цилиндрах в мороз.

Обязательно почитайте

Как работают свечи накаливания

При этом дизель легче заводится. Свечи зажигания в бензиновых моторах применяются для воспламенения топливовоздушной смеси в процессе работы двигателя. Систему впрыска на дизелях делают прямой, когда топливо поступает непосредственно в камеру, или непрямой, когда воспламенение происходит в предкамере (вихревая камера, фор-камера). Это небольшая полость над камерой сгорания, с одним или несколькими отверстиями, через которые туда поступает воздух.

Такая система способствует лучшему смесеобразованию, равномерному нарастанию давления в цилиндрах. Зачастую именно в вихревых камерах применяются калильные свечи, призванные облегчить холодный пуск. При повороте замка зажигания, автоматически запускается процесс нагрева свечей.

Плюсы и минусы дизельного мотора

Как и любой другой тип силового агрегата, дизельный мотор имеет положительные и отрицательные черты. К «плюсам» современного дизеля относят:

  • экономичность;
  • хорошую тягу в широком диапазоне оборотов;
  • больший, чем у бензинового аналога, ресурс;
  • меньшее количество вредных выбросов.

Дизель не лишен и недостатков:

  • моторы, не оснащенные свечами накаливания, плохо заводятся в мороз;
  • дизель дороже и сложнее в обслуживании;
  • высокие требования к качеству и своевременности обслуживания;
  • высокие требования к качеству расходных материалов;
  • большая, чем у бензиновых движков, шумность работы.

Дизельный двигатель с турбонаддувом

Принцип работы турбины на дизельном двигателе практически не отличается от такового на бензиновых моторах. Суть заключается в нагнетании в цилиндры дополнительного воздуха, что закономерно увеличивает количество поступающего топлива. За счет этого отмечается серьезный прирост мощности мотора.

Устройство турбины дизельного двигателя также не имеет существенных отличий от бензинового аналога. Устройство состоит из двух крыльчаток, жестко связанных между собой, и корпуса, внешне напоминающего улитку. На корпусе турбокомпрессоров имеется 2 входных и 2 выходных отверстия. Одна часть механизма встраивается в выпускной коллектор, вторая во впускной.

Схема работы проста: газы, выходящие из работающего мотора, раскручивают первую крыльчатку, которая вращает вторую. Вторая крыльчатка, вмонтированная во впускной коллектор, нагнетает атмосферный воздух в цилиндры. Увеличение подачи воздуха приводит к увеличению подачи топлива и росту мощности. Это позволяет мотору быстрее набирать скорость даже на низких оборотах.

Турбояма

В процессе работы турбина может совершать до 200 тысяч оборотов в минуту. Раскрутить ее до необходимой скорости вращения моментально невозможно. Это приводит к появлению т.н. турбоямы, когда с момента нажатия на педаль газа до начала интенсивного разгона проходит некоторое время (1-2 секунды).

Проблема решается доработкой турбинного механизма и установкой нескольких крыльчаток разного размера. При этом маленькие крыльчатки раскручиваются моментально, после чего их догоняют элементы большого размера. Такой подход позволяет практически полностью ликвидировать турбояму.

Также производятся турбины с изменяемой геометрией, VNT (Variable Nozzle Turbine), призванные решать те же проблемы. В настоящий момент существует большое количество модификаций подобного типа турбин. Коррекция геометрии успешно справляется и с обратной ситуацией, когда оборотов и воздуха становится слишком много и необходимо притормозить обороты крыльчатки.

Интеркуллер

Было замечено, что если при смесеобразовании используется холодный воздух, КПД двигателя увеличивается до 20%. Это открытие привело к появлению интеркуллера – дополнительного элемента турбин, повышающего эффективность работы.

После всасывания воздуха он проходит через радиатор, и в охлажденном состоянии попадает во впускной коллектор. Мы уже публиковали статью, в которой можно подробно ознакомиться со схемой работы интеркуллера.

За турбиной современного автомобиля необходимо должным образом ухаживать. Механизм крайне чувствителен к качеству моторного масла и перегреву. Поэтому смазочный материал рекомендуется менять не реже, чем через 5-7 тысяч километров пробега.

Кроме того, после остановки машины следует оставлять ДВС включенным на 1-2 минуты. Это позволяет турбине остыть (при резком прекращении циркуляции масла она перегревается). К сожалению, даже при грамотной эксплуатации ресурс компрессора редко превышает 150 тысяч километров.

На заметку: оптимальным решением проблемы перегрева турбины на дизельных моторах является установка турботаймера. Устройство оставляет двигатель запущенным на протяжении необходимого времени после выключения зажигания. После окончания необходимого периода электроника сама выключает силовой агрегат.

Строение и принцип действия дизельного двигателя делают его незаменимым агрегатом на тяжелом транспорте, которому необходима хорошая тяга «на низах». Современные дизели с равным успехом работают и в легковых автомобилях, главное требование к которым: приемистость и время набора скорости.

Сложный уход за дизелем компенсируется долговечностью, экономичностью и надежностью в любых ситуациях.

Принцип работы дизельного двигателя

Стоимость бензина сегодня постоянно растет, несмотря на то, что стоимость нефти падает. Поэтому многие автомобилисты рассматривают варианты приобретения машин с дизельным мотором. Дизельный двигатель – это хорошая альтернатива бензиновому мотору, в особенности с учетом того, что дизельные технологии далеко ушли вперед за последнее десятилетие, а стоимость топлива ниже.

Сегодня 50% новых машин в европейских странах работают именно на дизеле. Вызвано это тем, что современный двигатель автомобиля, работающего на дизеле, стал более экологичным и тихим. В то же время черный дым, а также громкий звук «трактора» ушли в прошлое. А преимуществами такого двигателя стали значительная мощность, экономия и отличная динамика автомобиля. В чем же причина подобного успеха этого мотора?

Особенности дизеля

Принцип работы дизельного двигателя несколько отличается от бензинового, что кроется в схеме создания рабочей смеси, а также последующего воспламенения. В движке, работающем на бензине, смесь в большинстве случаев готовится во впускном тракте. Лишь в части моделей смесь создается прямо в цилиндрах. В то же время смесь воспламеняется в определенный момент от искры вследствие электрического пробоя. Дизельный мотор же создает воспламенение посредством создания значительной температуры воздушных масс в цилиндре.

Работа дизельного двигателя будет выглядеть так:

  1. во время движения поршня в нижнее положение осуществляется приток чистых воздушных масс в цилиндры;
  2. при движении поршня вверх происходит нагрев этого воздуха;
  3. в высочайшей точке создается большая степень сжатия, вследствие чего температура может доходить до 800-900 градусов Цельсия;
  4. при прохождении самой верхней точки осуществляется впрыск топлива в камеры под сильнейшим давлением. В итоге оно соприкасается с раскаленными воздушными массами и происходит воспламенение.
  5. под действием горения происходит рост давления в цилиндре, передающего момент, что и создает шум такого двигателя.

Благодаря указанной схеме дизельному мотору вполне достаточно небогатой смеси топлива. Стоимость подобного топлива невероятно низка, что объясняет его неприхотливость, а также экономичность. К тому же коэффициент полезного действия, а также крутящий момент выше, чем у мотора на бензине. Но у дизеля есть и определенные минусы:

  1. вибрация и определенная шумность;
  2. определенные затруднения при холодном пуске;
  3. относительно невысокая мощность, но это вряд ли можно отнести к современным моделям.

Устройство дизеля

Дизельный мотор имеет степень сжатия практически в два раза больше бензинового. Поэтому это требует усиления его элементов, так как они требую больших нагрузок. Устройство дизельного двигателя предполагает отсутствие стандартной системы зажигания, так как используется принцип самовоспламенения от сжатия. При этом есть модели, где также применяются свечи. Они используются, чтобы прогревать воздух, что особенно важно зимой, когда пуск затруднителен.

Поршень дизельного двигателя имеет форму, которая зависит во многом от типа камеры сгорания. При этом его днище выступает за блоки цилиндров в момент нахождения в верхней точке. Поэтому экологичность и технические параметры зависят в большей степени от системы впрыска, а также типа камеры сгорания.

Как работает камера сгорания, типы

Камеры сгорания бывают следующих типов:

  1. разделенные;
  2. неразделенные.

Топливо при раздельном типе направляется в камеру, которая находится в головке блока цилиндров. К тому же у такого варианта разные конструкции, зависящие от создания смеси: вихрекамерный либо предкамерный.

Предкамерный впрыск выполняется в предварительную камеру, которая с цилиндром соединяется с помощью небольших отверстий либо каналов. После воспламенения смесь с высокой скоростью перемещается по отверстиям, создавая значительный перепад давления и отправляясь в главную камеру, где и сгорает.

Вихрекамерный вариант демонстрирует начало горения смеси в камере, в целом она похожа на полую сферу. При такте сжатия туда направляются воздушные массы, которые вихревым потоком закручиваются там, вследствие чего топливо хорошо перемешивается с воздухом.

Преимущества разделенной камеры заключается в том, что топливо сгорает за пару этапов, что обеспечивает стабильное и мягкое функционирование мотора.

Минусы разделенной камеры: значительный расход топлива вследствие определенных потерь из-за значительной поверхности подобной камеры, в том числе возникающих потерь при перетекании воздушных масс.

В случае неразделенного варианта камера сгорания выполняется в днище поршня, непосредственный впрыск топлива осуществляется в цилиндр. Благодаря такому подходу обеспечивалась значительная экономия. Однако на легковых автомобилях эта схема применялась редко, так как были конструктивные проблемы, вибрационные и шумовые недостатки. Тем не менее, благодаря новым электронным системам управления по дозировке топлива, удалось провести оптимизацию сгорания рабочей смеси и устранению недостатков.

Топливоподающие системы

Указанные системы обеспечивают подачу необходимых объемов топлива в определенное время с необходимым давлением. Главнейшим элементом такой системы можно назвать ТНВД, то есть топливный насос высокого давления.

Насосы могут быть двух видов:

  1. рядные многоплунжерные;
  2. распределительного типа.

Следующим элементом можно назвать насос-форсунку, ее устанавливают на цилиндр с целью впрыска топлива. Необходимую дозировку вычисляет специальный электронный блок, который отправляет команды на запорные клапаны. Использование перечисленных устройств обеспечивает мягкую работу мотора, в том числе понижает токсичность выхлопа.

Турбонаддув

Использования турбонаддува дает возможность повысить мощность дизеля. Это достигается подачей дополнительной топливной смеси в цилиндры. Турбонаддув оптимизирует работу мотора там, где мало воздуха (в горах), сохраняя необходимую мощность.

Основные недостатки турбодизеля вызваны надежной работой турбокомпрессора, который демонстрирует меньший ресурс мотора вследствие существенных требований к моторным маслам.

История создания дизельного двигателя

Дизельный двигатель: принцип работы, видео

Работа дизельного двигателя в прошлом веке ассоциировалась с неприятным запахом, грохотом и густым черным дымом, валящим из трубы. Но в последнее десятилетие дизельные технологии развиваются семимильными шагами.

Моторы стали тише, запах выхлопных газов почти полностью исчез, и вред, наносимый экологии, стал сводиться к нулю. Однако принцип работы не изменился.

Принцип работы дизельного двигателя

Отличие дизельного мотора от бензинового обусловлено тем, что смешивание топлива с воздухом происходит не снаружи, а внутри цилиндра.

К тому, же воспламеняется смесь самостоятельно, без свечи зажигания. Конструкция двигателя включает в себя:

  1. Цилиндр.
  2. Впускной и выпускной клапаны.
  3. Поршень.
  4. Топливную форсунку.

Из этого видео, вы узнаете, как работает дизельный двигатель. Смотрим и берём себе на заметку!

Описать принцип работы мотора можно, рассмотрев действия поршня, клапанов и форсунок во время каждого такта. Обычно их четыре.

такт – впуск топлива

У поршня есть две мертвые точки: верхняя (ВМТ) и нижняя (НМТ). Во время первого такта открывается впускной и закрывается выпускной клапаны. В цилиндре создается разрежение. Внутрь устремляется воздух.

такт – сжатие

Все клапаны закрыты. Поршень от НМТ перемещается к ВМТ, сжимая вошедший во время такта 1 воздух до 5 МПа. Его температура увеличивается до 700 Со.

Такт – рабочий ход (расширение)

Поршень находится в ВМТ. Топливный насос под высоким давлением подает топливо в цилиндр через форсунку. Распыляясь, оно смешивается с нагретым воздухом и самовоспламеняется.

При горении температура возрастает до 1800 Со, а давление до 11 МПа. Поршень начинает движение от ВМТ к НМТ, совершая полезную работу. В конце рабочего хода температура внутри цилиндра снижается до 700-800 Со, а давление падает до 300-500 кПа.

такт – выпуск газов

Впускной клапан закрыт, выпускной – открыт. Поршень выталкивает через него отработанные газы. Температура внутри снижается до 500 Со, а давление до 100 кПа.

Преимущества «дизелей»

В этом видео, вам расскажут, какие отличия и преимущества дизельных двигателей от бензиновых.

Моторы, совершающие полезную работу за счет сгорания дизельного топлива, имеют несколько преимуществ перед бензиновыми устройствами:

  1. Пониженный на треть расход топлива.
  2. Отсутствие системы зажигания.
  3. Увеличенный в полтора раза моторесурс.
  4. Стабильность регулировочных параметров.
  5. Средний КПД – 40 %, у двигателей с турбонаддувом – выше 50 %.
  6. Высокий крутящий момент.
  7. Низкая насыщенность выхлопных газов двуокисью углерода (экологии наносится меньше вреда).
  8. Пожаробезопасность за счет того, что дизельное топливо не может самовозгораться.

Среди минусов «дизеля» примечательно затруднение холодного пуска. Мотор является источником сильной вибрации и громкого шума. Однако современные модели лишены этих недостатков.

Схема работы отдельных узлов

Конструкция современного дизельного двигателя включает в себя узлы:

  1. Турбонагнетатель (турбокомпрессор, турбина).
  2. Интеркулер.
  3. Топливная форсунка.

Рассмотрим схемы работы составных узлов.

Турбокомпрессор

Вид турбокомпрессора в разрезе

Опыт показал, что топливо не успевает сгорать в момент, когда поршень движется к мертвой точке. Следовательно, если заставить его сгорать полностью, мощность мотора резко возрастет.

Для этого был создан турбокомпрессор, обеспечивающий подачу топлива под избыточным давлением и способствующий его полному сгоранию. Конструкция турбонагнетателя включает в себя:

  • Два кожуха (один для турбины, другой для компрессора);
  • Корпус подшипников с валом, соединяющим ротор турбины и колесо компрессора;
  • Подшипники – опора для узла;
  • Стальная защитная сетка.

Схема его работы такова:

  1. Компрессор всасывает внутрь воздух из внешней атмосферы;
  2. Ротор компрессора, приводящийся в действие от ротора турбины, сжимает его;
  3. Сжатый воздух охлаждается интеркулером;
  4. Воздух очищается фильтром и подается через впускной коллектор мотора, после чего выпускной клапан закрывается. Откроется он после того, как завершится рабочий ход;
  5. Отработанные газы, поступившие через выпускной коллектор, при прохождении через сужающийся канал корпуса турбины увеличивают скорость и оказывают воздействие на ротор;
  6. Скорость вращения турбины возрастает примерно до 1500 об/с, вследствие чего приводится во вращение ротор компрессора (они соединены валом);
  7. Цикл повторяется.

При охлаждении воздуха увеличивается его плотность. Поэтому в цилиндр двигателя его подается больше. Большое количество воздуха способствует полному сгоранию топлива, отчего повышается мощность дизельного мотора. Негативное влияние на экологию при этом снижается.

Вид интеркулера дизельного двигателя

Интеркулер

При сжимании воздуха не только увеличивается его плотность, но и температура. С одной стороны, поступление большого количества кислорода в цилиндр положительно сказывается на сгорании топлива. Но с другой стороны, впуск горячего воздуха способствует быстрому разрушению конструкции.

Поэтому необходимо устройство, которое снижает температуру сжимаемого воздуха. Таким является интеркулер. Принцип работы интеркулера заключается в охлаждении горячего вещества холодным путем теплообмена между ними.

Возможно использование двух видов интеркулера:

  • Воздух-воздух. Радиатор устройства передает тепло нагретого воздуха атмосфере. Конструкция предельно проста, потому имеет широкое распространение;
  • Воздух-вода. Сначала отработавшие газы поступают в компрессор, затем они проходят через радиатор интеркулера, который омывается водой. Устройства отличается высокой эффективностью и компактностью. Но дополнительно требуются наличие радиатора для охлаждения воды и насоса для ее циркуляции, управляющий блок.

Неважно, к какому типу устройств относится интеркулер.

Как подключить савбуфер в машину, подскажет наш сайт.

Как сделать тюнинг Нивы 4х4, можно узнать отсюда. Ценнейший материал в вашем распоряжении!

В данном статье, вам подскажут, где быстро можно продать машину.

Результат работы неизменен: температура воздуха, сжатого компрессором, уменьшается радиатором.

Сам интеркулер можно назвать радиатором охлаждения, состоящий из трубок, выполненных из материалов, обладающих высоким коэффициентом теплопроводности.

Форсунка

Устройство дизельного двигателя предусматривает наличие одной или нескольких форсунок. Эти детали предназначены для дозирования и распыления топлива.

Схема работы форсунки дизельного двигателя

С их помощью обеспечивается герметизация камеры сгорания. Современные форсунки работают от кулачка распределительного вала через толкатель. Топливо подается и сливается через каналы, расположенные в головке блока.

Дозировка его обеспечивается блоком управления, подающим сигналы запорным клапанам, обладающим электромагнитными свойствами. Форсунки функционируют в импульсном режиме. Это значит, что перед основным впрыском топлива осуществляется его предварительная подача.

При этом работа дизельного мотора становится мягче, а уровень токсичных выбросов в атмосферу уменьшается.

Таким образом, дизельный двигатель представляет собой набор взаимосвязанных узлов.

Турбонагнетатель обеспечивает подачу сжатого воздуха, охлажденного интеркулером, в камеру сгорания. В нее же подается топливо через форсунку. При выходе из строя хотя бы одного из узлов, работа мотора невозможна.

Так же советуем посмотреть

Принцип работы дизельного двигателя.

Принцип работы дизельного двигателя совсем иной, чем у мотора, работающего на бензине. Этим и объясняется принцип его питания. В двух словах – работа дизельного мотора строится на воспламенении топливной смеси от сильного сжатия, поскольку высокая температура вызывает ее возгорание.

Ремонт дизельных двигателей – дело не такое сложное, если знать, как он устроен, и на чем построена работа дизельного двигателя.

Порядок работы системы дизельного двигателя

Сначала цилиндры дизельного двигателя наполняются воздухом. Поршни в них движутся вверх, создавая очень высокое давление, от сжатия воздух раскалится до того, что дизельное топливо, будучи смешанным с ним, воспламенится.

Температура достигает максимального значения, когда поршень заканчивает движение вверх, затем дизтопливо впрыскивается посредством форсунки, она подает его не струйкой, а распыляет. Далее, из-за высокой степени нагрева сдавленного воздуха, воздушно-горючая смесь взрывается. Давление из-за взрыва достигает критической отметки и заставляет поршень опускаться вниз. На языке физики – совершается работа.

Система дизельного двигателя устроена так, что подает горючее в мотор, обеспечивая одновременно и несколько других функций.

Дизель состоит из:

  • бака для горючего,
  • насоса, подкачивающего дизтопливо,
  • фильтров,
  • топливного насоса, который подает горючее под высоким давлением,
  • свечи накаливания
  • основной части двигателя, которой является форсунка.

Подкачивающий насос отвечает за забор дизельного топлива из бака и отправляет его в топливный насос, а сам этот насос для подачи горючего под давлением – состоит из нескольких секций (их столько же, сколько двигатель ДВС имеет цилиндров – одна секция отвечает за обслуживание одного цилиндра).

Устройство насоса для подачи горючего под воздействием давления таково: внутри него по низу во всю длину располагается вал с кулачками, который совершает вращения от распредвала мотора. Кулачки воздействуют на толкатели, заставляющие функционировать плунжер (поршень). Поднимаясь, плунжер способствует давлению горючего в цилиндре. Таким образом и происходит выталкивание горючего посредством ТНВД в ту главную рабочую часть двигателя, которой и является форсунка.

Поступающему в магистраль дизельному топливу необходимо давление, чтобы продвинуться к форсунке для распыления через нее. Для этого и нужен поршень – он захватывает горючее внизу и продвигает к секционной верхушке. Поступающее под напором – горючее уже может качественно распыляться в камере сгорания. В этом насосе сила давления достигает 2000 атмосфер.

Одна из функций плунжера – контролировать объем подачи дизтоплива на форсунку своей двигающейся частью, открывающей и закрывающей канальца внутри него, эта часть соединяется с педалью, отвечающей за подачу газа в салоне машины. То, насколько открыты каналы подачи горючего и его объем – обусловлено углом, под которым повернут поршень. Его поворот осуществляет рейка, соединяющаяся с педалью газа.

Вверху насоса, подающего под давлением горючее, расположен клапан, он устроен так, чтобы открываться под давлением и захлопываться, если оно мало. Таким образом, когда поршень внизу, клапан – в захлопнутом положении, и горючее из шланга, к которому подсоединена форсунка, поступать в насос не может. Давление, образующееся в секции, достаточно для впрыскивания горючего в цилиндр, тогда топливо и доставляется по шлангу в форсунку, а она – производит распыление его в цилиндре.

Форсунка – назначение и виды

Очень часто ремонт дизельных двигателей связан с диагностикой работы форсунок и их починкой или заменой.

Они бывают двух видов:

  • управляемые механически
  • электромагнитные

В управляемых механически – отверстие, которое распыляет горючее, открывается в зависимости от силы давления в шланге. Ее отверстие закрывает игла, соединенная с поршеньком на верхушке форсунки. Пока не возникло давления, игла не позволяет горючему выйти через распылитель. Когда горючее поступает под напором, плунжер поднимается и оттягивает иголку. Отверстия распылителя раскрываются, и горючее выбрызгивается в цилиндр.

В нем установлены свечи накаливания, воспламеняющие горючее с воздухом. Они раскаляют воздух в специализированном отсеке, прежде, чем он окажется в цилиндре. По сути, свечи только облегчают запуск мотора ДВС, поскольку перед попаданием в цилиндр воздух уже достаточной температуры. Именно поэтому, когда на улице тепло, или если мотор еще не остыл после выключения зажигания, его запуск происходит и без участия свечей, а когда холодно – это невозможно.

Оснащенный электромагнитными форсунками дизель – более современный вариант. В таком случае – в насосе, подающем горючее, отсутствуют для каждого цилиндра своя секция, а шланг – один на все форсунки, и обеспечивает нужное давление и впрыск горючего сразу во все форсунки цилиндров ДВС.

При данной системе ДВС – на форсунки воздействуют электрические импульсы, поступающие от блока управления автомобилем: их клапаны, открывающие и закрывающие выходы для впрыска горючего – электромагнитные. Сам блок управления мотором считывает информацию со специальных датчиков, а затем дает команду электромагнитному управлению форсунками.

Такая система подачи топлива в дизельный двигатель еще и намного экономичней.

Форсунки начали использовать в производстве моторов еще в тридцатых годах XX столетия, их устанавливали сначала на авиамоторы, затем стали применять в двигателях гоночных машин. А массовое применение в автомобилестроении они получили лишь в семидесятые-восьмидесятые годы прошлого века. Тому послужили топливный кризис и осознание необходимости сбережения природы: чтобы сделать авто более мощными – специально переобогащали воздушно-горючую смесь, но это приводило к увеличению расхода топлива и переизбытку продуктов сгорания в газовых выхлопах автомобилей. И в 1967-м проблема была решена – тогда и была изобретена электромагнитная форсунка, в которой впрыск осуществляется электронной командой. Вне всяких сомнений, электроника всегда лучше механики, поскольку имеет перед ней массу очевидных преимуществ.


Смотрите также

     ico 3M  ico armolan  ico suntek  ico llumar ico nexfil ico suncontrol jj rrmt aswf