logo1

logoT

 

Восстановление цилиндров блока двигателя


Ремонт блока цилиндров двигателя: что нужно знать

Как известно, блок цилиндров двигателя является основой любого ДВС. Фактически, блок представляет собой объемную деталь, внутри которой размещаются различные узлы и механизмы (поршни и кольца, а также гильзы ЦПГ, коленчатый вал, шатуны КШМ и т.д.).

Также на блок цилиндров через прокладку устанавливается головка блока цилиндров, которая является «продолжением» блока. В ГБЦ находится ГРМ. При этом как узлы внутри блока, так и в ГБЦ подвергаются значительным механическим и температурным нагрузкам во время работы двигателя.

Не удивительно, что повреждения блока цилиндров не только нарушат работоспособность, но и выведут из строя силовой агрегат. По этой причине восстановление блока и его ремонт должен быть выполнен качественно и своевременно.

Основные дефекты и неисправности блока цилиндров двигателя

Начнем с того, что существует два вида блоков цилиндров:

  • чугунные БЦ;
  • блоки из алюминиевых сплавов;

Как правило, блоки из чугуна  дополнительно упрочнены при помощи графита, а облегченные изделия из алюминия делают гильзованными (в блок вставляется гильза из чугуна). Также существуют алюминиевые блоки цилиндров без гильз. В состав сплава включен кремний, который значительно упрочняет блок.

Что касается гильзованных блоков, гильзы бывают «мокрыми» и «сухими». В первом случае охлаждающая жидкость напрямую контактирует с гильзой, тогда как во втором гильза плотно запрессована в тело блока  во время изготовления.

Так или иначе, каждое решение имеет свои плюсы и минусы, а также в процессе эксплуатации возникают различные повреждения и дефекты блока цилиндров или дефекты гильз блока (в зависимости от типа БЦ).

Ремонт блока цилиндров необходимо начинать с установления причины неисправностей и дефектовки. Зачастую основной проблемой на моторах с большим пробегом является износ поверхности цилиндра или гильзы. На поверхности (зеркале) цилиндра появляются задиры, могут образоваться трещины, раковины и т.д.

Также нередко возникает износ цилиндров по направлению оси коленвала. Как правило, к повреждениям цилиндров на «свежем» моторе приводит перегрев двигателя или гидроудар, а также снижение уровня или значительная потеря свойств моторного масла.

Реже причиной дефектов блока становится неожиданное разрушение поршневых колец и другие непредвиденные поломки. Еще добавим, что в БЦ часто происходит деформация постели подшипников коленвала и т.п.

  • Что касается износа поверхностей цилиндров,  в этом случае такой износ зачастую является «естественным», то есть становится результатом эксплуатации двигателя в нормальных рабочих режимах. Сам ремонт цилиндров в этом случае зачастую предполагает расточку и хонингование цилиндра (нанесение хона). Это позволяет убрать эллипсность цилиндра, удалить царапины и задиры на зеркале.
  • Более сложным случаем можно считать обрыв шатуна, так как повреждения обычно более серьезные. Также причиной возникновения дефектов блока является и обрыв клапана, разрушение седла клапана и т.д. Результат — задиры на поверхности цилиндра и другие повреждения. Также в списке частых неисправностей следует выделить трещины блока или гильзы.
  • Еще добавим, что существуют так называемые «скрытые» проблемы, то есть определить дефекты визуально в рамках поверхностного осмотра может быть затруднительно. При этом неквалифицированный ремонт, который ограничен банальной  заменой изношенных частей, все равно приведет к тому, что двигатель потребуется разбирать повторно через несколько сотен или тыс. километров  пробега.
К указанным «скрытым» дефектам, прежде всего, следует отнести деформацию блока цилиндров. Зачастую такая деформация является следствием нарушения технологии в процессе изготовления блока. Простыми словами, если в блоке не снять внутреннее напряжение, возникнет деформация.

Кстати, данная проблема больше присуща блокам из чугуна. Также к деформации блока (как чугунного, так и алюминиевого) может привести перегрев двигателя или его неравномерный нагрев во время эксплуатации.

Восстановление цилиндров двигателя

Итак, ремонт блока цилиндров и восстановление самих цилиндров предполагает:

Для многих двигателей растачивание цилиндров является обязательной процедурой в рамках капитального ремонта мотора. Для  выполнения процедуры используется специальный станок для расточки цилиндров двигателей. Под самой расточкой блока  следует понимать обработку внутренней поверхности.

Такая обработка фактически представляет собой снятие слоя металла для выравнивания неровностей, удаления задиров, сглаживания раковин и т.д. Главная задача обработки заключается в том, чтобы придать цилиндрам нормальную форму (цилиндрическую).

Следующим шагом после расточки является хонингование. Нанесение хона на внутренние поверхности цилиндров выполняется абразивным мелкозернистым материалом (хонинговальный брус на хонинговальной головке). Сама хонинговальная головка крепится в шпинделе хонинговального станка. Такой станок позволяет реализовать вращательные и возвратно-поступательные движения.

Еще ремонт блока цилиндров может предполагать гильзовку или перегильзовку. В первом случае следует понимать установку гильз, хотя заводская конструкция изначально этого не предполагает. Во втором изношенную гильзу извлекают из блока, после чего устанавливают ремонтную новую.

Как правило, гильзовка  блока может быть выполнена двумя способами, когда гильзу охлаждают жидким азотом или же осуществляется нагрев ответной детали. В первом случае  охлажденная гильза уменьшается в размере и с легкостью ставится  (запрессовывается) на посадочное место. Второй способ предполагает нагрев. Оба метода запрессовки гильз позволяет добиться нужного натяга.

Напоследок отметим, что также в рамках восстановления блока может потребоваться выполнить ремонт постели подшипников коленчатого вала. Также в некоторых случаях возникает необходимость устранить деформацию блока. Для этого используется метод искусственного старения, когда блок нагревают до определенной температуры, после чего производится обработка различных участков.

Рекомендуем также прочитать статью о том, что такое гильзовка блока цилиндров. Из этой статьи вы узнаете о том, для чего выполняется данная процедура, а также когда возникает необходимость загильзовать двигатель, который изначально не рассчитан на установку гильз в блоке цилиндров.

Что в итоге

Как видно, существует достаточно много неисправностей самого блока цилиндров. Некоторые можно считать мелкими (например, если болт обломался в блоке и т.п.), тогда как другие являются достаточно серьезными (например, износ стенок цилиндра, трещины и т.д.)

При этом важно понимать, что в каждом случае технология ремонта блока цилиндров может отличаться. Также сложность ремонта блока двигателя напрямую будет зависеть от самой проблемы, от общего состояние поврежденной детали, от особенностей конструкции и т.д.

На практике это означает, что в одних случаях можно выполнить восстановление блока цилиндров своими руками даже в условиях гаража, тогда как в других потребуется обязательное наличие спецоборудования (станки для расточки блока, хонингования, шлифовки). Также очень важным аспектом является опыт и квалификация самого мастера.

С учетом вышесказанного становится понятно, что доверять выполнение подобных работ следует только опытным специалистам, а сам двигатель оптимально ремонтировать на таких СТО, где реализована возможность производить все необходимые операции прямо на месте. Прежде всего, это позволит сократить сроки ремонта, а также зачастую может служить гарантией качества.

Восстановление блока цилиндров двигателя

Блоки цилиндров ДВС отечественного производства изготавливаются из серого чугуна марок СЧ 18-36, СЧ 15-32, СЧ 24-44, а также алюминиевого сплава АЛ4.

Основной технологической базой при изготовлении и восстановлении блоков цилиндров является плоскость прилегания поддона и два отверстия.

Проверка наличия трещин в рубашке охлаждения проводится путем гидроиспытания блока под давлением 0,4 МПа. Устранение трещин производится с помощью:

1. Сварки.

2. Сварки с последующим нанесением полимерного материала для обеспечения герметичности.

3. Полимерных композиций как самостоятельного технологического способа.

Применение сварочных операций может вызвать появление значительных остаточных напряжений и, как следствие, деформации детали. Применение полимерных материалов является более предпочтительным. Современные полимерные композиции обеспечивают высокую прочность и сцепляемость с основным материалом детали.

При восстановлении блока не допускается раскомплектовывание крышек коренных подшипников.

Перед проведением операций обработки и контроля коренных опор болты крепления крышек должны быть затянуты с усилием, указанным в нормативной документации. Эта информация для отечественных двигателей приведена в Руководстве по ремонту, для двигателей иностранного производства усилия затяжки коренных опор приведены в справочниках Autodata и AM Data, руководствах по ремонту.

СХЕМА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ВОССТАНОВЛЕНИЯ БЛОКА ЦИЛИНДРОВ ДВИГАТЕЛЯ

№ п/п

Содержание операции. Базирование детали

Оборудование

1

Обработка базовой плоскости и двух базовых отверстий. Базирование – по поверхностям опор коренных подшипников

Вертикально-фрезерный станок

2

Выпрессовка изношенных втулок распределительного вала, запрессовка новых

Пресс специальный или специальная технологическая оснастка

3

Восстановление отверстий с поврежденной резьбой

Сверлильный станок, набор инструмента для установки спиральных вставок

4

Выпрессовка базирующих штифтов

Специальная оснастка

5

Фрезерование плоскостей под головки цилиндров. Базирование по плоскости и двум отверстиям

Вертикально-фрезерный станок

6

Растачивание посадочных поясков под гильзы цилиндров и выточек под упорные фланцы гильз цилиндров (для блоков с мокрыми гильзами). Базирование по плоскостям и двум отверстиям

Вертикально-расточной станок

7

Растачивание цилиндров под ремонтный размер (для моноблоков). Базирование по плоскости и двум отверстиям

Вертикально-расточной станок

8

Растачивание гнезд вкладышей коренных подшипников перед нанесением покрытия. Базирование по плоскости и двум отверстиям

Горизонтально-расточной станок специальный

9

Нанесение покрытия на поверхности гнезд вкладышей коренных подшипников (возможно газо-термическое напыление, гальванопокрытие, полимерное покрытие и др.)

Специальное технологическое оборудование и оснастка для нанесения покрытия

10

Растачивание гнезд вкладышей коренных подшипников. Базирование по плоскости и двум отверстиям

Горизонтально-расточной станок специальный

11

Хонингование поверхностей гнезд вкладышей коренных подшипников. Базирование по торцевой поверхности

Хонинговальный станок

12

Хонингование цилиндров (двукратное, предварительное и чистовое). Базирование по плоскости и двум отверстиям

Хонинговальный станок

13

Общая мойка блока цилиндров и промывка масляных каналов

Установка для стурйной мойки деталей. Аппарат высокого давления

Восстановление цилиндров возможно путем их обработки под ремонтный размер с использованием поршней и колец ремонтного размера или методом дополнительной ремонтной детали (ДРД) с обработкой под размер завода-изготовителя. Более подробно восстановление цилиндров изложено в разделе восстановления гильз цилиндров.

РЕЖИМЫ ТЕХНОЛОГИЧЕСКИХ ОПЕРАЦИЙ

В данном разделе приводится справочная информация о способах устранения дефектов блоков цилиндров и режимах технологических операций.

Обломы

Газовая сварка и наплавка производится с подогревом детали (для чугунных блоков цилиндров). Нагрев ведется в два этапа:

1. Нагрев до t= 200 – 250ºCи выдержка в печиT= 20 – 25 мин.

2. Нагрев до t= 600 – 650ºCи выдержка в печиT= 15 – 20 мин.

Наплавка ведется кислородно-ацетиленовым пламенем горелкой с наконечниками №3.

Присадочный материал ­– чугунные прутки диаметром 6 мм с содержанием кремния не менее 2.5%.

После наплавки деталь вновь нагревается до t= 600 – 650ºCи охлаждается медленно вместе с печью.

Трещины

Электродуговая сварка производится без предварительного нагрева детали.

Присадочный материал – медно-железные электроды марки 034-1 диаметром 4 мм с обмазкой УОНИ 13/55, содержащей 18–20% железного порошка от массы меди.

Сварка ведется постоянным током. Сила тока I= 150 – 160 А прерывистыми участками длиной 15 – 20 мм.

Для устранения трещин могут быть использованы полимерные композиции на основе эпоксидных смол. Состав композиции:

эпоксидная смола ЭД-40 – 100 весовых частей (в.ч.);

пластификатор – дибутилфталат 20 в.ч.;

отвердитель ­ полиэтиленполиамин 10 в.ч.;

наполнитель 60 в.ч.

Состав наполнителя: чугунный порошок, алюминиевая пудра, только в равных долях.

Время затвердевания полимерной композиции при комнатной температуре T= 24 час.

При t= 60ºCT= 240 мин. Приt= 100ºCT= 60 мин. Расход композиции – около 20 г. на 1 блок цилиндров.

Повреждение резьбовых соединений, обломы болтов

Для удаления обломков болтов рекомендуется применение специальных экстракторов.

1. В теле обломка болта сверлится осевое отверстие.

2. В отверстие вводится экстрактор со специальной левой спиральной нарезкой.

3. При вращении экстрактора против часовой стрелки он входит в отверстие, его острые кромки врезаются в металл болта и при дальнейшем вращении обломок удаляется из отверстия.

Восстановление резьбы в отверстиях производится одним из следующих методов:

Нарезание резьбы ремонтного размера

1. Рассверливание отверстия под новую стандартную резьбу большего размера.

2. Обработка фаски.

3.Нарезание ремонтной резьбы.

Обеспечивается качественная резьба с минимальными затратами. Однако не всегда есть возможность использовать резьбу большего размера и при этом нарушается взаимозаменяемость.

Заварка отверстия с последующим нарезанием резьбы

1. Заварка отверстия.

2. Обработка торца.

3. Сверление отверстия.

4. Обработка фаски.

5. Нарезание резьбы размера по рабочему чертежу.

Применение сварочной операции может привести к деформации детали.

Постановка резьбового ввертыша (дополнительная ремонтная деталь)

1. Рассверливание отверстия.

2. Нарезание резьбы большего диаметра.

3. Изготовление ввертыша с наружной и внутренней резьбой.

4. Установка резьбового ввертыша в отверстии.

5. Фиксация ввертыша от отворачивания (кернение, приварка).

Этот метод требует достаточного места вокруг поврежденного отверстия и может быть использован при наличии достаточно толстых стенок детали.

Постановка резьбовой пружинной вставки (дополнительная ремонтная деталь)

1. Рассверливание отверстия.

2. Нарезание резьбы.

3. Установка резьбовой пружинной вставки.

4. Фиксация от отворачивания.

Способ обеспечивает качественное восстановление резьбы с малыми затратами. Сохраняется взаимозаменяемость, т.к. размер восстановленной резьбы не изменяется. Не требуется наличие толстых стенок блока цилиндров вокруг поврежденного отверстия.

Восстановление гнезд вкладышей коренных подшипников

Одним из наиболее ответственных элементов блока цилиндров являются посадочные гнезда под подшипники скольжения. К точности их размеров, формы и взаимного расположения предъявляются высокие требования. При восстановлении необходимо обеспечить: диаметр отверстий, их форму, соосность, параллельность осей опор коленчатого и распределительного валов, их межцентровое расстояние, перпендикулярность к осям цилиндрам, шероховатость поверхностей.

При восстановлении перед нанесением большинства видов покрытий поврежденные отверстия растачиваются для обеспечения правильной геометрической формы, правильного положения осей (это обеспечит равномерную толщину покрытия после окончательной механической обработки), создания необходимой шероховатости поверхности (для обеспечения хорошей сцепляемости покрытия).

После нанесения покрытия поверхности гнезд вкладышей коренных подшипников обрабатываются одновременно с одной установки.

Часто повреждено и требует восстановления только одно посадочное отверстие. Но в этих случаях необходимо восстанавливать и другие отверстия, которые должны быть соосны с поврежденным отверстием, т.к. только их совместная обработка позволяет обеспечить выполнение требований по их взаимному расположению. Это увеличивает себестоимость восстановления, но позволяет обеспечить качество.

При обработке посадочных отверстий и должны использоваться технологические базы, применяемые на этой операции при производстве детали - плоскость и два отверстия.

Варианты технологических методов восстановления гнезд вкладышей коренных подшипников

Гнезда вкладышей коренных подшипников могут быть восстановлены различными способами. Каждый из них обладает своими достоинствами и недостатками. Выбор наиболее рационального способа в каждом случае индивидуален и зависит от возможностей и технологической оснащенности предприятия. Ниже рассмотрены некоторые возможные способы восстановления этих поверхностей.

Механическая обработка

1. Крышки коренных подшипников снимаются, маркируются и их торцы фрезеруются на величину 0,7 мм.

2. Крышки устанавливают в блок цилиндров в соответствии с маркировкой и болты их крепления затягивают с нормативным усилием.

3. Отверстие гнезд вкладышей коренных подшипников растачивают «в линию». При этом ось отверстиий подшипника поднимается на 0,2­–0,3 мм.

Достоинства:

1) простота способа;

2) низкая себестоимость;

Недостатки:

1) уменьшение межосевого расстояния между коленчатым и распределительным валами, что нарушает нормальную работу распределительных шестерен. Этот недостаток в меньшей степени сказывается у ДВС с приводом распределительного вала с помощью цепи или зубчатого ремня;

2) технологическая «чернота» у стыков, т.е. у стыков остается необработанный участок поверхности, что нарушает прилегания тыльной стороны вкладыша к гнезду и может вызвать снижение срока службы подшипника;

Газотермическое напыление

1. Болты крышек коренных подшипников затягиваются с нормативным усилием.

2. Отверстия вкладышей коренных подшипников растачиваются «в линию» под увеличенный размер для получения толщины покрытия 0,7 – 1,0 мм.

3. Крышки подшипников снимаются и маркируются.

4. Поверхности гнезд обезжириваются, отверстия масляных каналов закрываются асбестовыми пробками, защищаются плоскости прилегания крышек и блока цилиндров.

5. Поверхности гнезд в блоке и крышках подвергаются дробеструйной обработке.

6. На подготовленные поверхности наносится покрытие с помощью газотермического напыления.

7. Удаляются наплывы металла на торцевых поверхностях, фрезеруются пазы для фиксации вкладышей.

8. Крышки устанавливаются в блок цилиндров в соответствии с маркировкой, болты затягиваются с нормативным усилием.

9. Гнезда коренных подшипников растачиваются под размер рабочего чертежа.

Из всех видов газотермического напыления наилучшие результаты получаются при применении плазменного напыления. Для нанесения покрытия используется стальной порошок марки ПЖ-5М с присадкой в качестве легирующих добавок порошки алюминия и никеля 1–2%. В качестве плазмообращующего газа используется азот, аргон, их смесь.

Режимы напыления:

расход плазмообразующего газа Q= 20­–25 л/мин;

сила тока I= 325–350 А;

дистанция напыления L= 145–155 мм.

Растачивание гнезд после нанесения покрытия производится резцами Т 15К6. Режим растачивания:

частота вращения борштанги n= 200–250 об/мин;

подача s= 0.05 мм/об;

глубина резания – 1 до 0,5 мм.

Достоинства:

1) обеспечиваются правильные геометрические размеры, форма и взаимное расположение восстанавливаемых поверхностей, правильное прилегание вкладыша к поверхности гнезда;

2) отсутствие термического воздействия на деталь, а, следовательно, отсутствует её деформация.

Недостаток – пористое покрытие, получаемое при газотермическом напылении, снижает теплопроводность и может привести к повышению температуры вкладышей.

Полимерное покрытие

Гнезда вкладышей растачиваются как и в предыдущем случае при применении газо-термического напыления.

После растачивания гнезд их поверхности обезжириваются и на них наносится полимерная композиция.

Для формирования необходимых размеров и формы восстанавливаемых поверхностей используется калибрующая оправка, которая имеет форму гладкого вала диаметром, равным диаметру коренных опор. Эта оправка укладывается в коренные опоры блока, устанавливаются крышки и болты их крепления затягиваются с нормативным усилием. Перед установкой калибрующая оправка смазывается индустриальным маслом.

После затвердевания полимерной композиции удаляются её подтеки.

Растачивание коренных опор с нанесенным полимерным покрытием не требуется, так как оправка сформировала соосные поверхности нужного размера, формы и обеспечила необходимую шероховатость поверхностей.

Крышки опор снимаются и удаляются подтеки полимерного материала.

В состав полимерной композиции входит эпоксидная смола, пластификатор, наполнитель и отвердитель. В качестве наполнителя используется смесь железного порошка и цемента в пропорции 2:1.

Отвердение композиции проводится в горячем состоянии при режимах:

1. t= 50ºC, выдержкаT= 5 час.;

2. t= 100ºC, выдержкаT= 1 час..

Достоинства:

1. Отсутствие необходимости проведения механической обработки поверхностей после нанесения покрытия.

2. Отсутствие термического воздействия на деталь.

Недостаток – снижение теплопроводности и возможно повышение температуры вкладышей.

Гальваническое покрытие

На поверхности предварительно расточенных и обезжиренных гнезд наносится гальваническое покрытие, которое затем обрабатывается до размера по рабочему чертежу.

Для нанесения покрытия используются вневанное проточное железнение.

Достоинство: качественное восстановление поверхностей – высокая сцепляемость покрытия с основным материалом детали, твердость покрытия, высокая теплопроводность.

Недостаток: сложность технологического процесса нанесения гальванопокрытия, необходимость использования специального оборудования и технологической оснастки для проточного железнения. Применение этого способа целесообразно на предприятиях, имеющих гальванические участки.

Метод дополнительной ремонтной детали (ДРД)

ДРД в виде полуколец могут быть использованы при восстановлении гнезд вкладышей коренных подшипников блоков цилиндров ДВС. В предварительно расточенные гнезда устанавливаются стальные полукольца, фиксируются в опорах штифтами под углом 120º, растачиваются, фрезеруются торцевые поверхности и пазы.

Достоинства:

1) сравнительная простота;

2) отсутствие термического воздействия на деталь.

Недостатки:

Происходит ослабление крышек коренных подшипников, снижается их жесткость, повышается деформация под действием динамических нагрузок. Это вызывает повышенную деформацию вкладышей, что в свою очередь, нарушает нормальное формирование масляного слоя в подшипнике, а также повышенные знакопеременные напряжения вызывают усталостное выкрашивание антифрикционного слоя вкладыша.

При восстановлении торцевых поверхностей коренной опоры под упорный подшипник применяется пайка-сварка латунными припоями ПМЦ-54 и Л-63. Температура плавления 850–900ºC. Флюсом является бура или смесь буры и борной кислоты в пропорции 1:1. Операция проводится с помощью кислородно-ацетиленовой горелки. После нанесения покрытия торцевые поверхности проходят механическую обработку.

ВОССТАНОВЛЕНИЕ ГОЛОВКИ ЦИЛИНДРОВ ДВИГАТЕЛЯ

Головки цилиндров двигателей изготавливаются из алюминиевых сплавов АЛ-4 или из серого чугуна. В тело головки установлены с натягом седла клапанов, изготовленные из легированного износостойкого чугуна, и направляющие втулки клапанов.

Дефекты

Способы устранения

Сквозные пробоины и трещины в камере сгорания

Браковать

Трещины на плоскости сопряжения с блоком цилиндров

Заварка с последующей механической обработкой

Трещины на стенках рубашки охлаждения

Заварка, заделка полимерными материалами

Деформация поверхности сопряжения с блоком

Шлифование или фрезерование

Износ отверстий в направляющих втулках клапанов

Замена втулок

Повреждение отверстий под направляющие втулки клапанов

Обработка под ремонтный размер и установка втулок ремонтного размера по наружному диаметру

Износ фасок седел клапанов

Шлифование или фрезерование

Ослабление посадки седел клапанов в гнездах

Растачивание гнезд под ремонтный размер, установка седел ремонтного размера

Повреждение резьбы в отверстиях

Обработка под ремонтный размер или постановка ДРД

РЕЖИМЫ ПРОВЕДЕНИЯ ТЕХНОЛОГИЧЕСКИХ ОПЕРАЦИЙ

Рассматриваются особенности выполнения технологических операций восстановления головок цилиндров, изготовленных из алюминиевых сплавов.

Трещины

При устранении трещин с помощью сварки возможны различные варианты выполнения операций:

1) перед сваркой у концов трещины, расположенной на плоскости сопряжения с блоком, сверлятся отверстия 0,4 мм на глубину 3 мм;

2) края трещины обрабатываются по всей длине на глубину 3 мм под углом 90–20°;

3) головка нагревается до t = 180–200ºС;

4) поверхность, подлежащая сварке, зачищается металлической щеткой;

5) подготовленная трещина заваривается электросваркой постоянным током обратной полярности электродом марки ОЗА-2 диаметром 5 мм.

Может применяться газовая сварка. В качестве присадочного материала используется проволока марки АЛ-4. Флюсом служит кристаллическая бура. После сварки шов промывается раствором азотной кислоты и горячей воды.

Наиболее прогрессивным способом устранения трещин считается аргонодуговая сварка. В качестве присадочного материала используется проволока Св-АК12 диаметром 4 мм. Зона сварки надежно защищается от кислорода и азота воздухо потом аргона, который подается по каналам горелки. Обеспечивается высокое качество сварочного шва.

После сварки шов зашлифовывается.

Трещины в стенках рубашки охлаждения могут устраняться с помощью полимерных материалов. Перед нанесением полимера трещина подготавливается также как и перед сваркой. Полимерный состав наносится в разделанный шов с перекрытием. В качестве полимера используются композиции на основе эпоксидных смол. Для ускорения процесса застывания композиции головка нагревается до t = 100°С. Время выдержки Т = 1ч.

После устранения трещин головка проверяется на герметичность методом опрессовки.

Деформация поверхности сопряжения с блоком

Дефект устраняется методом фрезерования плоскости торцевой фрезой с пластинами ВК-8 или шлифованием. После фрезерования (шлифования) производится проверка неплоскостности на поверочной плите щупом. В результате этой операции уменьшается объем камер сгорания. Объемы камер сгорания (их глубина) контролируются и корректируются фрезерованием. Техническими условиями устанавливается минимально дпостимая высота головки цилиндров.

Износ отверстий в направляющих втулках клапанов

Изношенные направляющие втулки выпрессовываются на прессе. Контролируются размеры отверстий под втулки. Если их размеры лежат в поле допуска, то вместо изношенных втулок запрессовываются новые, отверстия в которых после этого образовываются разверткой до размера по рабочему чертежу. При этом обязательно обрабатываются фаски седел клапанов для обеспечения их соосности с отверстиями направляющих втулок.

Повреждение отверстий под направляющие втулки клапанов

Отверстия под направляющие втулки, размеры которых превышают допустимые, развертываются под ремонтный размер. При сборке используются втулки ремонтного размера по наружному диаметру. После запрессовки втулок обрабатываются отверстия в них и фаски седел клапанов.

Износ фасок седел клапанов

Изношенные фаски седел клапанов шлифуются. При этом обеспечивается угол фаски в соответствии с рабочим чертежом. Для автомобилей иностранного производства эта информация содержится в справочникахAM-Data. Фаски шлифуются «как чисто» или фрезеруются специально фрезой под определенным углом и контролируются калибром. При обработке фаски необходимо обеспечить ее соосность с отверстием в направляющей втулке. Для этого режущий инструмент базируется по отверстию направляющей втулки.

Ослабление посадки седел клапанов в гнездах

Прогар и другие неустранимые повреждения седел клапанов

Седла клапанов выпрессовываются специальным съемником. Посадочные гнезда растачиваются под ремонтный размер и в них запрессовываются седла ремонтного размера, фаски которых шлифуются или фрезеруются. При запрессовке седел клапанов головка цилиндров нагревается доt= 180ºC, а седла охлаждаются в среде сжиженного азота при t = -196ºС. При этом установка седел происходит легко При выравнивании температур головки цилиндров и седел клапанов обеспечивается необходимый натяг в сопряжении. Попытка запрессовать седло клапана в головку из алюминиевого сплава без нагрева-охлаждения приводит к слабой посадке седла. В этом случае возможно его выпадание во время работы двигателя.

Повреждение резьбы в отверстиях

Поврежденная резьба восстанавливается также как и у блоков цилиндров

ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС ВОССТАНОВЛЕНИЯ ГИЛЬЗ ЦИЛИНДРОВ ДВС

Гильзы цилиндров являются тонкостенными оболочками, т.е. эти детали имеют тонкие стенки, большие диаметры и длину.

Гильзы цилиндров ДВС изготавливаются из чугуна марок СЧ 18-36. СЧ22-44 с твердостью НВ 179-229 (ЗИЛ, ЗМЗ), специальных чугунов твердостью HRCэ 42-50 (ЯМЗ, КамАЗ). В верхней части некоторые гильзы имеют тонкостенную вставку из специального легированного чугуна для повышения износостойкости (ЗИЛ, ЗМЗ).

Заготовки гильз изготавливаются литьем в оболочковые формы или центробежным литьем.

Характерные дефекты: износ рабочей поверхности, деформация детали (рабочей поверхности и посадочных поясов), коррозионные и кавитационные повреждения посадочных поясов, трещины. Трещины и отслоение вставки являются выбраковочными дефектами.

Проверка наличия трещин проводится путем их гидроиспытания под давлением 0,4МПа.

Изношенные рабочие поверхности обрабатываются под ремонтный размер (растачивание и одно- или двукратное хонингование). Заводом-изготовителем устанавливаются от 1 до 3 ремонтных размеров. Ремонтный интервал обычно составляет 0,5 мм. Все гильзы цилиндров на одном двигателе должны быть одного ремонтного размера.

Растачивание гильз цилиндров производится на вертикально-расточных станках борштангами с резцами, имеющих твердосплавные пластины ВКЗ, ВК6. Обработка ведется за один проход. Шероховатость после растачивания R« = 1.25—2,5 мкм. После растачивания должен оставаться припуск на хонингование. Технологическими базами являются посадочные пояски и торец буртика. При этом имитируется посадка гильзы в блоке цилиндров. Закрепление гильзы в 3-х кулачковом патроне недопустимо, т.к. при этом гильза неизбежно деформируется и после растачивания будет иметь значительные отклонения от правильной круглой формы.

Режимы обработки:

подача 0,05—0,15 мм/об.;

скорость резания 84— 175 м/мин.

В результате растачивания при условии правильного базирования и соблюдения режимов технологической операции обеспечивается правильная геометрическая форма рабочей поверхности.

После растачивания проводится 3-кратное или чаще 2-кратное (черновое и чистовое) хонингование.

Припуск:

на черновое хонингование 0,050—0,080 мм.

на окончательное хонингование 0,005—0,030 мм;

Хонингование гильз имеет своей целью получение точных окончательных размеров рабочей поверхности детали, необходимой шероховатости и оптимального микрорельефа поверхности. Операция производится на хонинговальных станках. Используются хоны с брусками

из синтетических алмазов АСР 50/40 (для предварительного хонингования) и АСР 20/14 (для окончательного хонингования).

Режимы предварительного хонингования:

окружная скорость 60—80 м/мин.;

скорость возвратно-поступательного движения 15—25м/мин;

давление брусков 0,5—1,0 МПа.

Режимы чистового (окончательного) хонингования такие же, как и предварительного, но давление брусков ниже

и составляет 0,3—0,5 МПа.

После хонингования допуск на отклонение макрогеометрической формы составляет 0,01—0,02 мм. Шероховатость поверхности R, — 0,08 мкм.

В качестве смазочно-охлаждающей жидкости используется смесь керосина и индустриального масла. После чистового хонингования гильзы контролируются и сортируются на размерные группы в соответствии с ТУ завода- изготовителя.

Восстановление посадочных поясков производится с помощью нанесения металлопокрытий (гальванических или полученных газо-термическим напылением, наплавкой и др.) с последующим шлифованием. Перед нанесением покрытий посадочные пояски шлифуются на кругло шлифовальных станках на глубину 0,15—0,20 мм. Для предотвращения повышенной деформации гильзы закрепляются в специальных приспособлениях (цанговых оправках или приспособлениях с гидропластмассой). После шлифования производится нанесения ме¬таллопокрытия. Для получения металлопокрытий используется вневанные гальванопроцессы (проточное железнение, электронатирание), газотермическое напыление, контактная приварка ленты, вибродуговая наплавка.

При электроконтактной приварке ленты используется стальная лента толщиной 0,3 мм, изготовленная из стали марок 10, 15, 20.

Режимы:

сила сварочного тока I = 5400 А;

усилие сжатия электродов Р = 1000 Н;

длительность импульса сварочного тока 0,08 с; частота вращения гильзы n= 2 об/мин.

После нанесения покрытия проводится шлифование посадочных поясов и обработка фасок и канавок под уплотнительные кольца.

СХЕМА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ВОССТАНОВЛЕНИЯ ГИЛЬЗ ЦИЛИНДРОВ

Содержание операции. Базирование

Оборудование, приспособление

1

Шлифование посадочных поясков перед нанесением металлопокрытия. Базирование по внутренней поверхности гильзы и торцу

Круглошлифовальный станок. Приспособление с гидропластмассой или цанговое разжимное приспособление

2

Подготовка поверхностей посадочных поясков перед нанесением покрытия

В соответствии с применяемым способом

3

Нанесение металлопокрытия. Возможные способы: проточное железнение, электронатирание, газотермическое напыление с возможным оплавлением покрытия, электроконтактная приварка ленты, вибродуговая наплавка

Установка для вневанного железнения или для газотермического напыления, приварки ленты, вибродуговой наплавки

4

Шлифование посадочных поясков. Базирование по внутренней поверхности гильзы и торцу

Круглошлифовальный станок. Приспособление с гидропластмассой или цанговое разжимное приспособление

5

Растачивание (шлифование) рабочей поверхности гильзы под ремонтный размер. Базирование по посадочным поясам и торцу буртика

Вертикально-расточной станок, специальное приспособление

6

Предварительное хонингование рабочей поверхности. Базирование по посадочным поясам и торцу буртика

Хонинговальный станок. Специальное приспособление

7

Чистовое (окончательное) хонингование рабочей поверхности. Базирование по посадочным поясам и торцу буртика

Хонинговальный станок. Специально приспособление

В некоторых случаях рабочая поверхность гильзы цилиндра восстанавливается до размера по рабочему чертежу. В этом случае применяется метод дополнительной ремонтной детали (ДРД). В качестве ДРД используется стальная лента, которая сворачивается и устанавливается в предварительно расточенное отверстие, а затем шлифуется.

Заготовкой служит холоднокатаная, калиброванная стальная лента. Материал ленты – сталь У8А, У10А, 65Г.

СХЕМА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ВОССТАНОВЛЕНИЯ ГИЛЬЗ ЦИЛИНДРОВ МЕТОДОМ ДРД

Ремонт блока цилиндров двигателя

В процессе работы в блоке цилиндров появляются следующие дефекты:

  1. износ, задиры и риски на зеркале цилиндров;
  2. трещины цилиндров, водяной рубашки и головки цилиндров;
  3. износ, трещины и раковины клапанных седел;
  4. поломка шпилек и болтов крепления головки цилиндров;
  5. накипь в водяной рубашке;
  6. нагар в головке цилиндров.

Под действием коррозии, повышенной температуры, трения поршней и поршневых колец стенки цилиндров приобретают овальную форму (эллипсность) в плоскости качания шатуна и конусность по длине цилиндра.

Такой износ происходит по следующим причинам:

  1. При сгорании топлива в цилиндре газы прорываются в канавки поршневых колец и с силой отжимают их к стенкам цилиндра; при этом сила давления колец по мере движения поршня вниз уменьшается, вследствие чего износ цилиндра в верхней части больше, чем в нижней (конусность); кроме того, условия смазки верхней части цилиндра из-за более высоких температур хуже.
  2. Сила Р давления газов, действующая на поршень при рабочем ходе, разлагается на две составляющие: А (рис. а), направленную вдоль шатуна, и Б, направленную перпендикулярно оси цилиндра и прижимающую поршень к левой стороне стенки цилиндра (если смотреть со стороны радиатора). При сжатии передаваемая от коленчатого вала шатуну сила также разлагается на две составляющие, из которых одна действует вдоль шатуна и сжимает рабочую смесь, а другая прижимает поршень к правой стенке цилиндра (рис. б). Боковые силы действуют также при тактах впуска и выпуска, но в меньшей мере. В результате действия боковых сил цилиндр изнашивается больше в плоскости качания шатуна и приобретает эллипсность. Более интенсивен износ левой стенки цилиндра вследствие того, что боковая сила при рабочем ходе наибольшая.

Рис. Схема действия сил: а — при рабочем ходе; б — при сжатии.

Кроме эллипсности, боковые силы вызывают и конусность, так как по мере движения поршня вниз они уменьшаются.

Риски и задиры на зеркале цилиндра образуются вследствие перегрева двигателя, недостатка смазки и ее загрязненности, недостаточного зазора между поршнем и стенкой цилиндра, плохого крепления поршневого пальца и поломки поршневых колец.

Величину износов цилиндра (эллипсность и конусность) определяют индикатором.

Эллипсность цилиндра измеряют в поясе, расположенном на расстоянии 40—50 мм от верхней кромки цилиндра. Измерение производится в двух взаимно перпендикулярных плоскостях, имеющих износы: наименьший — по оси коленчатого вала и наибольший — в плоскости, перпендикулярной оси коленчатого вала. Разность размеров, показанных индикатором, есть величина эллипсности.

Для определения конусности индикатор перемещают вдоль цилиндра в плоскости, перпендикулярной оси коленчатого вала. Разность размеров в верхней и нижней частях цилиндра, показанных индикатором, есть величина конусности.

При измерениях индикатор нужно опускать строго по вертикали, не допуская его отклонений в стороны.

Если эллипсность превышает 0,04 мм, а конусность 0,06 мм и имеются риски и задиры, цилиндры необходимо ремонтировать.

Рис. Установка индикатора в цилиндр.

При ремонте цилиндра увеличивают его диаметр до соответствующего ремонтного размера, затем устанавливают увеличенный поршень.

В зависимости от износа цилиндра применяют следующие способы ремонта:

  1. шлифование;
  2. растачивание с последующей доводкой;
  3. установку гильз (если износ цилиндра. превышает последний ремонтный размер).

Шлифование цилиндров двигателя производят на специальных внутришлифовальных станках. На этих станках шлифовальный камень устанавливают значительно меньшего диаметра, чем цилиндр. Шлифовальный камень имеет три движения: вокруг своей оси, со скоростью 2000—3000 об/мин, по окружности шлифуемого отверстия цилиндра со скоростью 200—300 об/мин и вдоль оси цилиндра.

Процесс шлифования цилиндров — сложный и длительный, особенно при необходимости снятия большого слоя металла. Поверхность цилиндра получается слегка волнистой и забивается наждачной пылью, которая проникает в поры чугуна, что в дальнейшем вызывает ускоренный износ поршневых колец и поршней. Шлифование цилиндров в настоящее время применяется редко.

Растачивание цилиндров производится на расточных станках стационарного или переносного типа. Вертикально-расточной станок переносного тийа прикрепляют при растачивании непосредственно к блоку цилиндров. При этом для растачивания первого и третьего цилиндров блока четырехцилиндрового двигателя станок укрепляют сверху блока болтами, пропущенными через второй цилиндр, а для растачивания второго и четвертого цилиндров — через третий. Перед окончательным закреплением станка на блоке его шпиндель центрируют четырьмя кулачками, раздвигаемыми конусом 12. Резец 10 шпинделя устанавливают на нужный размер по микрометру.

Рис. Вертикально-расточной переносной станок: 1 — шлифовальный камень для заточки резца; 2 и 3 — цилиндрические шестерни; 4 — вертикальные валы; 5 и 9 — шарикоподшипники шпинделя; 6 — шпиндель; 7 — гильза подачи; 8 — рукоятка подъема гильзы подачи; 10 — резец; 11 — кулачки для центрования шпинделя; 12 — центрирующий конус; 13 — червячная передача на вертикальный вал; 14 — электродвигатель.

Вращение от электродвигателя 14 через червячную передачу 13 и вал передается на цилиндрические шестерни 2 и 3 и далее через второй вертикальный вал 4 на шпиндель, соединенный с валом посредством шпонки. После пуска электродвигателя включают автоматическую подачу гильзы 7 и производят растачивание цилиндра. По окончании растачивания гильза возвращается вверх при помощи рукоятки 8. Этот станок позволяет растачивать цилиндры диаметром от 85 до 120 мм при длине растачивания 300 мм.

Недостатком указанного вида растачивания является необходимость доводки, так как на расточенной поверхности остаются следы резца.

Доводка цилиндров производится на специальных или вертикально-сверлильных станках, а также электродрелями при помощи доводочной головки, в которой устанавливают абразивные камни в виде брусков.

Рис. Доводочная головка: 1 — абразивные камни; 2 — стяжная пружина державок камней; 3 — сферический шарнир; 4 — полый валик; 5 — установочный диск с делениями.

Для разводки брусков внутри полого валика помещен стержень, соединенный шарнирно с винтом установочных конусов головки. На верхнем конце стержня имеется установочный диск. Поворот диска на одно деление изменяет диаметр на 0,005 мм. Доводочная головка свободно вставляется в цилиндр, а при ее вращении шлифовальные бруски под действием центробежной силы расходятся и прижимаются плотно к стенкам цилиндра. Наибольшая разводка камнедержателей не превышает 1,5 мм; поэтому камнедержатели надо подбирать в соответствии с диаметром цилиндра. Скорость вращения головки 200—300 об/мин. Возврагно-поступательное движение вверх и вниз равно от 60 до 80 двойных ходов в минуту.

В процессе доводки головку и стенки цилиндра следует обильно поливать керосином, который смывает частицы металла и камня, а также охлаждает полируемую поверхность цилиндра.

По окончании обработки конусность и эллипсность цилиндра не должны превышать 0,02 мм.

Тонкое растачивание (алмазное) производится резцами из твердых сплавов при больших скоростях резания (150—200 м/мин) и малых подачах резца (0,01—0,02 мм) на один оборот шпинделя. Для растачивания используют специальные вертикально-расточные станки стационарного и переносною типов. После тонкого растачивания доводки не требуется.

Установка гильзы применяется при износе цилиндра, превышающем последний ремонтный размер, или при наличии на его стенках глубоких рисок и задиров. При этом необходимо выполнить следующие операции:

  1. Расточить цилиндр до диаметра, обеспечивающего установку гильзы, толщина стенок которой должна равняться 2—3 мм после ее растачивания под номинальный размер. В верхней части цилиндра делают кольцевую выточку под буртик гильзы.
  2. Изготовить гильзу из материала, по возможности близкого к материалу цилиндра. По наружному диаметру гильза должна иметь припуск 0,05—0,15 мм на запрессовку.
  3. Смазать гильзу и стенки цилиндра маслом и запрессовать гильзу при помощи гидравлического пресса под давлением 20—40 г; в процессе запрессовки наблюдать за показаниями манометра пресса и при резком повышении давления прессование прекратить, так как это указывает на перекос гильзы и может вызвать трещины в блоке.

При отсутствии пресса гильзы можно запрессовывать ручным приспособлением.

Рис. Приспособление для запрессовки гильзы ручным способом: 1 — винт; 2 — натяжная гайка; 3 и 6 — опорные шайбы; 4 — гильза цилиндра; 5 — блок цилиндров.

Затем следует расточить и прошлифовать гильзу под номинальный или уменьшенный размер цилиндра. Растачиванием под размер меньше номинального предусматривается возможность использования прошлифованных старых поршней.

Устранение трещин цилиндров и водяной рубашки

Трещины на стенках цилиндров и водяной рубашки являются следствием замерзания воды в блоке, заливки холодной воды в перегретый двигатель, неосторожного обращения с блоком при ремонте, запрессовки гильз с большим натягом.

Наличие трещин на стенке цилиндра сопровождается попаданием в него воды, что влечет за собой перебои в работе двигателя и падение мощности. При наличии трещин на стенке водяной рубашки получается подтекание воды по наружной поверхности двигателя. Трещины можно обнаружить путем испытания цилиндров и рубашки подкрашенной водой под давлением в течение 1—2 час. Цилиндры испытывают под давлением 20—25 ат, а водяную рубашку — под давлением 2—3 ат.

Место и размер трещины определяются отложением красящего вещества.

Иногда удается установить наличие трещины и более простым способом. Для этого предполагаемое место трещины смачивают керосином, а затем насухо вытирают и посыпают сухим порошком мела. Через 1—2 часа керосин, проникший в трещину, выйдет на поверхность и даст отчетливую желтую полоску, по которай легко определить наличие и границы трещины.

Трещины цилиндра устраняют установкой гильз или газовой заваркой со стороны водяной рубашки (для этого специально вырезают кусок стенки водяной рубашки против трещины цилиндра); при этом подогревают весь блок цилиндров на древесном угле.

Операция заварки — сложная и ответственная и поэтому применяется редко.

Трещины водяной рубашки заделывают штифтовкой, наложением заплат, металлизацией, замазкой и реже сваркой.

Штифтовка производится в следующем порядке:

  1. Засверливают концы трещины сверлом 4,8 мм и просверливают отверстия по всей длине трещины на расстоянии 8 мм.
  2. Нарезают резьбу в отверстиях метчиком 6 мм, затем завертывают в отверстия стержни из красной меди и обрезают их ножовкой так, чтобы они выступали на 1,5—2 мм.
  3. Просверливают отверстия посредине между стержнями и нарезают в них резьбу, затем завертывают стержни, которые должны захватывать ввернутые раньше.
  4. наложить заплату на место трещины, легкими ударами пригнать ее по месту, пользуясь заплатой как шаблоном, накернить, просверлить отверстия в блоке сверлом 4,8 мм и нарезать в них резьбу метчиком 6 мм;
  5. смазать заплату суриком, наложить на место и привернуть ее стальными винтами; при наложении заплаты на головку блока под заплату нужно установить свинцовую прокладку;
  6. расчеканить края заплаты и опробовать блок водой под давлением 2—3 ат.

Металлизацией заделывают небольшие трещины, которые предварительно разделывают крейцмейселем, обезжиривают, после чего металлизируют посредством металлизатора.

Замазкой заделывают только небольшие трещины, причем замазку соответствующего состава наносят на подготовленную трещину и в течение 1—2 час. просушивают. Подготовка трещины заключается в зачистке ее и в обезжиривании.

Мелкие волосяные трещины можно заливать соляной кислотой в смеси с нашатырем; при этом трещина затягивается отлагающейся ржавчиной.

Заварку трещины производят в следующем порядке:

  1. расфасовывают трещину для получения скоса стенок под углом 45°;
  2. медленно нагревают блок до температуры 650—700° в термической печи;
  3. прогретый блок закрывают листовым асбестом, оставляя открытыми только места сварки;
  4. заваривают трещины чугунными электродами;
  5. помещают блок в печь и медленно его охлаждают (6—8 час);
  6. производят механическую обработку шва, затем испытывают блок водой.

Ремонт клапанных седел

Рис. Последовательность фрезерования клапанного седла.

Небольшой износ клапанного седла устраняют притиркой к нему клапана. При значительном износе клапанное седло фрезеруют конусными фрезами, вначале черновой фрезой с углом 45° (седло выпускного клапана двигателя ЗИС-120 фрезеруют фрезой с углом 30°), затем фрезой с углом 75° (снимают нижнюю фаску) и, наконец, фрезой с углом 15° (снимают верхнюю фаску). После этого седло окончательно обрабатывают чистовой фрезой с углом 45°.

Рис. Шлифование клапанного седла.

Фрезерование можно производить только в том случае, если направляющие втулки клапанов мало изношены или они новые и обеспечивают плотную посадку стержня фрезы. При фрезеровании не следует снимать излишний слой металла, чтобы не уменьшить срок службы седла.

Рис. Растачивание седла клапана торцевой фрезой.

После фрезерования седло шлифуют конусным камнем при помощи электродрели и притирают клапан. При большом износе седла или после неоднократного фрезерования, когда верхняя кромка головки клапана опускается ниже кромки седла на 0,5 мм, гнездо растачивают на сверлильном станке торцевой фрезой и впрессовывают в него чугунное кольцо с натягом 0,12—0,2 мм, которое затем обрабатывают коническими фрезами в последовательности, указанной выше. Если же в блоке предусмотрена установка сменных седел, то изношенное седло заменяют новым ремонтного размера.

Рис. Съемник для выпрессовки вставного седла клапана: 1 — корпус съемника; 2 — натяжная гайка; 3 — опорная шайба; 4 — винт с разжимным конусом; 5 — гайка, на осях которой расположено три рычажка; 6 — пружина рычажков; 7 — разжимной конус рычажков; 8 — рычажок съемника.

Для замены седла клапана необходимо:

  1. Выпрессовать изношенное седло из блока, пользуясь специальным съемником; съемник установить в седло так, чтобы его рычажки были ниже кольцевого пояска седла; затем подвернуть винт разжимного конуса и натяжной гайкой выпрессовать седло.
  2. Расточить гнездо в блоке торцевой фрезой, учитывая посадку седла с натягом 0,12—0,2 мм.
  3. Запрессовать новое седло и расчеканить его края оправкой.
  4. Прошлифовать седло и притереть к нему клапан.

Рис. Оправка для расчеканки вставного седла клапана.

Заводы выпускают седла ремонтных размеров с наружным диаметром, увеличенным на 0,05 и 0,25 мм для двигателей ГАЗ-51 и М-20 «Победа» и на 0,5 мм — для двигателя автомобиля «Москвич».

Ремонт направляющих втулок клапанов

Изношенные направляющие втулки клапанов восстанавливают путем развертывания их удлиненной разверткой под увеличенный ремонтный размер стержня клапана. При значительном износе втулок их удаляют под прессом или выколоткой и заменяют новыми. Новую втулку запрессовывают в блок с натягом 0,03 мм, а затем развертывают внутренний ее диаметр под номинальный размер или под уменьшенный, так чтобы использовать старые клапаны с перешлифованными стержнями.

Рис. Удаление втулки клапана выколоткой.

Ремонт направляющих толкателей

Направляющие толкателей, выполненные непосредственно в блоке и в отдельных секциях, ремонтируют развертыванием под увеличенные ремонтные размеры стержней толкателей или развертыванием с последующей запрессовкой втулок.

Втулки изготовляют из серого чугуна и запрессовывают в предварительно развернутые отверстия с натягом 0,02—0,03 мм. Внутренние отверстия втулок развертывают под уменьшенные (перешлифованные) толкатели или под толкатели номинального размера с соблюдением необходимых зазоров.

Удаление накипи

Накипь в водяной рубашке ухудшает охлаждение двигателя, вызывает его перегрев и потерю мощности. Для удаления накипи все круглые отверстия водяной рубашки закрывают деревянными пробками, а к фасонным отверстиям привертывают пластины с резиновыми прокладками. Затем в рубашку заливают раствор следующего состава:

  • Каустическая сода: 50 г.
  • Керосин: 10 г.
  • Вода: 1 л.

Через 6—8 час. раствор выпускают и рубашку промывают водой.

Блоки с алюминиевыми головками (автомобилей М-20 «Победа», ГАЗ-51) промывают 3%-ннм раствором соляной кислоты, который заливают на 30—40 мин.; после этого раствор выпускают и рубашку цилиндров промывают чистой водой.

Удаление нагара

Нагар на стенках камеры сгорания, на днищах поршней и клапанах образуется вследствие неполного сгорания топлива, попадания масла и твердых частиц с воздухом.

Нагар удаляют скребками или металлическими щетками при помощи электродрели. Для облегчения этой операции детали предварительно помещают в керосин на 1—2 часа.

Технология восстановления блоков цилиндров

ГОСНИТИ разработаны технологические процессы и комплекты оснастки для восстановления блоков цилиндров тракторных двигателей СМД-14, СМД-60, Д-50, Д-240, Д-65, А-41, ЯМЭ-238НБ, ЯМЗ-240Б. Технологическими процессами предусмотрено устранение всех дефектов в соответствии с техническими требованиями на капитальный ремонт двигателей. Разработанная оснастка позволяет качественно восстанавливать блоки цилиндров, обеспечивая повышенный послеремонтный ресурс двигателей. Эта технология широко внедрена на ремонтных предприятиях Госкомсельхозтехники. На рисунке 46 приведена схема технологического процесса восстановления блоков цилиндров, который расчленен на ряд взаимосвязанных маршрутов. Маршрут I — основной и на схеме показан сплошной линией, остальные маршруты показаны пунктирными линиями. Ниже подробно рассмотрены современные способы устранения основных дефектов блоков цилиндров.

Устранение трещин и пробоин. Наибольшее распространение при устранении трещин и пробоин блоков цилиндров получили сварочные процессы. Для сварочных процессов разработано и изготовлено необходимое оборудование, обеспечивающее качественное выполнение работ по заварке трещин и пробоин. Заваривать трещины и пробоины блоков цилиндров можно как при холодном, так и горячем процессах. В последние годы широкое применение получила на ремонтных предприятиях холодная сварка чугунных блоков цилиндров самозащитной проволокой ПАНЧ-11, позволяющей с высоким качеством ремонтировать трещины, пробоины, сколы и другие дефекты.

Хорошие результаты при холодной заварке трещин, особенно в перемычках между цилиндрами, дает полуавтоматическая сварка в среде аргона А проволокой МНЖКТ-5-1-02-02.

Сварное соединение высокого качества при холодной сварке блоков цилиндров получают, применяя специальные железоникелевые электроды марки МНЧ-2, медно-железные электроды ОЗЧ-2.

Холодную сварку чугунных блоков цилиндров можно производить комбинированным способом, когда с целью экономии дорогостоящих материалов и получения сварного шва требуемого качества используют электроды различных марок. При этом первый слой на кромках трещины наносят проволокой ПАНЧ-11 или МНЧ-2, а последующие слои — стальными электродами ЦЧ-4, ЦЧ-ЗА, УОНИ-13/45.

Рис. 46. Схема маршрутов технологического процесса восстановления блоков цилиндров

Для устранения дефектов блоков цилиндров можно применять^ также горячую сварку при нагреве детали до 600… 700 °С, применяя в качестве присадочного материала чугунные прутки марки А. Трещины и другие дефекты блоков цилиндров можно устранять-пайко-сваркой, используя различные припои. При заварке трещин в алюминиевых блоках цилиндров применяют аргонно-дуговую^ сварку. При отсутствии специальных сварочных материалов сваривать чугунные блоки цилиндров можно стальными электродам» методом наложения отжигающих валиков. Подготовка к сварке, режимы, оборудование, материалы для холодной и горячей сварки чугунных и алюминиевых деталей приведены были ранее (см. стр. 10).

Трещины в блоках цилиндров могут быть устранены с помощью фигурных вставок. Технология ремонта трещин фигурными вставками подробно изложена ранее.

Весьма эффективно проводить ремонт ГБЦ, в том числе устранять трещины, технологией газодинамического напыления металлов ДИМЕТ, использование которой не приводит к нагреву поверхности свыше 150 градусов.

Зачастую заваренная трещина или пробоина не имеет достаточной герметичности. Для создания герметичности применяют по- ‘ лимер-ные составы, приготовленные на основе эпоксидных смол. Применение герметизирующих полимерных материалов необходимо также при ремонте трещин фигурными вставками.

Трещины и пробоины в мейее ответственных местах блоков цилиндров могут быть устранены путем применения эпоксидных составов.

Технология ремонта трещин и пробоин в корпусных деталях с применением полимерных материалов подробно рассмотрена ранее (см. стр. 64).

Восстановление гнезд коренных подшипников. Наиболее простой способ восстановления изношенных поверхностей под вкладыши коренных подшипников блоков цилиндров — растачивание этих поверхностей и использование вкладышей ремонтного (увеличенного) размера.

Блоки, имеющие диаметр отверстий под вкладыши 97,93… …98,06 мм, для двигателей типа СМД (СМД-14, СМД-14А, СМД-14Б, СМД-14К, СМД-14Н, СМД-15К, СМД-15КФ, СМД-12Б, СМД-17К, СМД-18) и 80,93… 81,06 мм для двигателей Д-50, Д-50Л, Д-240 и несоосность коренных опор более 0,07 мм, направляют на расточку коренных опор под вкладыши с увеличенным наружным диаметром. Для растачивания опор под вкладыши коренных подшипников в большинстве случаев на ремонтных предприятиях применяют расточные станки типа РД.

Блок цилиндров устанавливают на плоскость разъема с поддоном, т. е. так же, как и при изготовлении. Однако использовать заводские базовые отверстия в блоке для установки его на станке невозможно, так как они в процессе изготовления блоков были смяты и деформированы. В связи с этим устанавливают блоки в горизонтальной плоскости на станке относительно борштанги специальными быстродействующими индикаторными устройствами с точностью до 0,02 мм.

Для центровки блока цилиндров относительно оси борштанги расточного станка два измерителя устанавливают в пазы на концах борштанги и закрепляют. При повороте борштанги на 180° индикаторы обоих измерителей покажут удвоенное значение смещения осей крайних отверстий блока относительно оси борштанги з горизонтальной плоскости. Перемещая блок цилиндров на опорах станка, необходимо добиться одинаковых показаний каждого из индикаторов в левом и правом горизонтальных положениях в пределах ±0,03 мм, после чего блок закрепляют и снимают измерители.

Обрабатывают опоры блока цилиндров под вкладыши ремонтного размера при 200… 250 об/мин борштанги и подаче 0,08 мм/об ,до диаметров согласно следующим данным (допуск для всех 4-0,02 мм).

Овальность и конусность коренных опор не должны превышать 0,02 мм. Шероховатость расточенных поверхностей отверстий должна быть не более Ra= 1,25 …0,63 мкм. После растачивания блоки направляют на промывку масляных каналов с целью удаления стружки.

При отсутствии вкладышей ремонтного размера опоры восстанавливают путем фрезерования плоскостей разъема крышек коренных подшипников на 0,3… 0,4 мм и последующего растачивания до нормального размера при условии сохранения допустимого размера расстояния от оси отверстия опор до верхней плоскости блока цилиндров. Для фрезерования плоскостей разъема комплект крышек устанавливают в приспособление и на станке типа 6М12П фрезеруют опорные поверхности крышек под гайки «как чисто». Затем переставляют крышки в приспособлении плоскостью разъема вверх (рис. 47), фрезеруют их, выдержав размер Н (рис. 48). Для блоков цилиндров двигателей Д-50 и Д-240 размер Н должен быть не менее 72 мм, двигателя СМД-14 —не менее 98 мм, двигателя СМД-60 — не менее 109 мм. Паз под усик вкладыша углубляют фрезой. Крышки с обработанными плоскостями разъема устанавливают на блок, закрепляют и растачивают до нормального размера. Установку блока цилиндров в горизонтальной плоскости производят аналогично описанной ранее при растачивании коренных опор под вкладыши ремонтных размеров. В вертикальной плоскости блок цилиндров устанавливают после контроля расстояния от плоскости прилегания головки до верхней точки отверстия под вкладыши коренных подшипников индикаторным приспособлением. Растачивание отверстий с переносом оси в глубь цилиндров допускается при размерах А и В (рис. 49).

Обычно ремонтируемые блоки цилиндров имеют по этим параметрам припуски в пределах 0,1… 0,15 мм. В этом случае блок устанавливают на станке с заниженным расположением оси опор ло отношению к оси борштанги, что обеспечивает припуск для расточки в верхней полуокружности опоры (кроме боковых участ-жов). Растачивают отверстия на станках типа РД резцами ВК6М при режимах: частота вращения борштанги—180 об/мин, подала — 0,05 мм/об, глубина резания — 0,2 мм.

ГОСНИТИ разработаны технологический процесс и оборудование для восстановления изношенных гнезд коренных подшипников ‘блоков цилиндров с диаметром отверстий 95 мм и более электро-:контактной приваркой стальной ленты с последующим растачиванием приваренного слоя до номинального размера. Для приварки применяют ленту из стали 20, допускается также применение лен-«хы из стали 10.

Технологический процесс приварки заключается в следующем. Изношенные гнезда растачивают до диаметра, превышающего номинальный на 1 мм. Из стальной ленты толщиной 1 мм изготавливают две заготовки шириной, равной ширине гнезда, и длиной L = где ?) — диаметр расточенного гнезда. Заготовкам придают форму, идентичную форме коренной опоры. Затем заготовки вставляют в отверстия коренных опор. При этом заготовки должны полностью огибать поверхности отверстий без нахлеста в месте стыка, с зазором не более 0,5 мм. После установки ленты приварку начинают на расстоянии 5… 10 мм от места стыка ленты и продолжают в сторону, противоположную стыку, делая полный оборот сварочной головки с перекрытием 5… 10 мм. Скользящие токопередающие контакты, изготовленные из бронзы БрХ диаметром 50 …60 мм, смазывают графито-касторовой смазкой (25… …30% графита П марки А и 70 …75% технического касторового масла первого сорта).

Режимы сварки в зависимости от марки чугуна рекомендуются следующие: сила сварочного тока 6,5… 8,5 кА; длительность импульса сварочного тока 0,14…0,24 с; пауза между сварочными импульсами 0,04… 0,1 с; скорость сварки 0,5… 1 м/мин; усилие сжатия 1800…2500 Н; ширина рабочей части ролика 6…8 мм. Обрабатывают приваренный слой на расточных станках борштангой в три прохода. Черновое растачивание производят твердосплавными пластинками типа ВК-4. Получистовое и чистовое растачивание ведут резцами с пластинками, изготовленными из эльбора-Р или гексанита-Р. Заключительная операция механической обработки приваренного слоя — хонингование.

При наличии повреждений отдельных гнезд коренных подшипников ремонту подвергаются только они. В этом случае поврежденное гнездо растачивают и полуокружность в блоке наплавляют электродуговой или газовой наплавкой. Чаще всего применяют газовую наплавку латунью Л-63.

Наплавленный слой меди или латуни хорошо обрабатывается лезвийным инструментом, но его твердость ниже твердости чугуна. Наплавка латуни на поверхность детали без ее подогрева может привести к образованию трещин, поэтому поверхность вблизи изношенной опоры подогревают газовой горелкой до 500… 700 °С. Наплавленные опоры растачивают до нормального размера борштан-гой с одним резцом. При этом необходимо предварительно обработать плоскости разъема крышек. При несоосности опор коренных подшипников более допустимых пределов, но не более 0,07 мм для двигателя СМД-14 и его модификаций, а также двигателей Д-50, Д-240 и отсутствии других дефектов коренные вкладыши (новые или бывшие в употреблении) устанавливают в опоры и растачивают по антифрикционному слою под размеры имеющихся коленчатых валов. Вкладыши нужно растачивать в тех блоках, которые имеют размеры отверстий под вкладыши не более допустимых без ремонта.

Перед растачиванием вкладыши промывают дизельным топливом при температуре 70… 80 °С в течение 5 мин. Вкладыши на мойку должны направляться парами в комплекте для одного двигателя. Эти пары — верхние и нижние вкладыши — не должны рас-комплектовываться. Вкладыши, бывшие в употреблении, предназначенные для растачивания, не должны иметь смятых установочных выступов, износов и задиров на наружной поверхности. На антифрикционном слое не допускаются задиры и риски глубиной более 0,3 мм.

Для растачивания вкладышей могут быть использованы модер-. низированные станки РД или другие станки, обеспечивающие необходимую точность. Модернизированные станки РД выпускаются с редуктором, обеспечивающим частоту вращения шпинделя 250 об/мин для растачивания чугуна и 1200 об/мин для растачивания антифрикционного слоя. При растачивании вкладышей в блоках несоосность осей коренных опор и борштанг допускается не более 0,03 мм. Растачивают вкладыши при 1000… 1200 об/мин борштанги и подаче 0,025 мм/об. Перед расточкой вкладышей гайки у двигателей СМД и болты у двигателей Д-50 крышек коренных подшипников затягивают с моментом 2,0… 2,2 Н-м. Овальность и конусность расточенных вкладышей не должна превышать 0,02 мм. Шероховатость поверхности расточенных вкладышей должна быть не более i?a=0,63… 0,32 мкм. После растачивания толщина слоя антифрикционного сплава должна быть не менее 0,3 мм. На внутренней расточенной поверхности допускается кольцевая риска шириной и глубиной до 0,3 мм. Блоки в сборе с расточенными вкладышами промываются для удаления стружки.

Восстановление поверхностей отверстий под гильзы цилиндров. При глубине кавитационных раковин до 1,5 мм на нижних посадочных поясках в отверстиях под гильзы цилиндров протачивают вторую канавку выше или ниже первоначальной под стандартное резиновое уплотнительное кольцо (рис. 50). При этом блок цилиндров устанавливают на столе радиально-сверлильного станка и с помощью расточного приспособления растачивают канавку.

Приспособление с утопленными резцами вводят в гнездо под гильзу и закрепляют гайками ;на двух шпильках блока. К приводной головке приспособления подводят оправку, установленную конусом в шпинделе станка. Выдвигают резцы путем легкого притормаживания маховика, втягивающего конусный разжим в резцовой головке. Ход маховика ограничен закрепленной на резьбе контргайкой. Скорость вращения шпинделя станка — не более 30 об/мин. Для устранения овальности посадочных отверстий под гильзы цилиндров применяют комбинированную развертку, устанавливаемую в обрабатываемые гнезда заходной частью и имеющую привод как от шпинделя радиальносверлильного станка 2Н55, так и ручной при тонком слое снимаемого металла.

Обрабатывают верхнее и нижнее отверстия одновременно. Неравномерный износ торцевой поверхности гнезда под бурт гильзы, достигающий более 0,05 мм, устраняют на станке 2Н55 с помощью самоустанавливающейся по оси отверстия зенковки с регулируемым концевым упором. Припуск на обработку принимают, как правило, 0,2 мм. Под гильзу на обработанный торец устанавливают металлическое кольцо. Износ посадочных отверстий в блоке под нижний поясок гильзы и имеющиеся кавитационные раковины глубинои более 2 мм устраняют .путем растачивания на вертикальном алмазно-расточном станке 278Н нижнего посадочного пояска и запрессовки металлического кольца с готовой канавкой под уплотнение. С этой целью резцовую голов/ку станка с помощью центрирующего приспособления устанавливают соосно с верхним посадочным пояском, после чего приспособление снимают, резцовую головку опускают до уровня нижнего пояска и выполняют расточку гнезда. В пояске остается перемычка толщиной 5 мм для упора металлического кольца при его запрессовке. Растачивают при 250 об/мин шпинделя и подаче 0,08 мм/об. Затем в перемычке прорезают паз с двух противоположных сторон для установки кольца.

Рис. 51. Блок цилиндров двигателя Д-240 с запрессованным кольцом в нижнее посадочное отверстие.

Наружную поверхность кольца и поверхность гнезда дважды обезжиривают техническим ацетоном. После обезжиривания наносят тонким слоем на поверхность гнезда эпоксидный состав и запрессовывают кольцо до упора в бурт (рис. 51). Для вклеивания ремонтного кольца состав на основе эпоксидной смолы готовят по следующей рецептуре (в весовых частях) : эпоксидная смола ЭД-6 или ЭД-16— 100, дибутилфталат — 15, полиэтиленполиамин— 10. В отремонтированное гнездо блока цилиндров устанавливают гильзу и проводят отвердевание эпоксидного состава. После этого гильзу и резиновое уплотнительное кольцо извлекают, зачищают поверхность посадочного места от наплывов эпоксидного состава шлифовальным кругом на машине типа ШР-06.

Восстановление резьбовых соединений. Поврежденные или изношенные резьбовые отверстия восстанавливают установкой резьбовых спиральных вставок. Технология восстановления резьбовых отверстий с применением резьбовых спиральных вставок изложена в главе 6 первого раздела.

При наличии изломанных болтов и шпилек место излома зачищают заподлицо с поверхностью блока. В центре облома сверлят отверстие диаметром (согласно таблице 27) на всю длину облома. Затем забивают экстрактор в высверленное отверстие соответствующего номера, на экстрактор надевают специальную гайку и вывинчивают обломок из резьбового отверстия. После удаления обломанной части шпильки или болта резьба «прогоняется» соответствующим метчиком. При повреждении резьбы устанавливают резьбовую спиральную вставку.

Изношенные втулки распределительного вала заменяют новыми с последующим развертыванием до нормального размера.

Контроль восстановленных блоков цилиндров. Опорную поверхность под бурт гильзы проверяют с помощью приспособления для контроля выточки под гильзу. Разница замеров глубины гнезда в четырех точках должна -быть не более 0,05 мм.

Размеры, овальность и конусность отверстий под гильзы цилиндров, втулки распределительного вала, коренных опор блоков цилиндров и блоков цилиндров в сборе с вкладышами контролируют нутромером.

Соосность коренных опор блоков цилиндров и блоков цилиндров в сборе с вкладышами контролируют приспособлением КИ-4862.

Шероховатость обработанных поверхностей контролируют с помощью образцов шероховатости. Размеры и другие параметры восстановленных блоков цилиндров должны соответствовать установленным требованиям (см. табл. 25).


Смотрите также

     ico 3M  ico armolan  ico suntek  ico llumar ico nexfil ico suncontrol jj rrmt aswf