logo1

logoT

 

Электролитом в кислотном аккумуляторе является кислота


Page Not Found - Microtex

Address

Address Line 1

City

State / Province / Region

Postal Code

TürkiyeАвстралияАвстрияАзербайджанАландские островаАлбанияАлжирАмериканское СамоаАнгильяАнголаАндорраАнтарктидаАнтигуа и БарбудаАргентинаАрменияАрубаАфганистанБагамыБангладешБарбадосБахрейнБелизБелоруссияБельгияБенинБермудыБолгарияБоливия (Многонациональное Государство)Бонэйр, Синт-Эстатиус и СабаБосния и ГерцеговинаБотсванаБразилияБританская территория Индийского океанаБруней-ДаруссаламБуркина-ФасоБурундиБутанВануатуВатиканВенгрияВенесуэла (Боливарианская Республика)Виргинские острова (Американские)Виргинские острова (Великобритания)Внешние малые острова СШАВосточный ТиморВьетнамГабонГаитиГайанаГамбияГанаГваделупаГватемалаГвинеяГвинея-БисауГерманияГернсиГибралтарГондурасГонконгГренадаГренландияГрецияГрузияГуамДанияДжерсиДжибутиДоминикаДоминиканская РеспубликаЕгипетЗамбияЗападная СахараЗимбабвеИзраильИндияИндонезияИорданияИракИран (Исламская Республика)Ирландия (Республика)ИсландияИспанияИталияЙеменКабо-ВердеКазахстанКаймановы островаКамбоджаКамерунКанадаКатарКенияКипрКиргизияКирибатиКитайКокосовые острова (Килинг)КолумбияКоморские островаКонгоКонго (Демократическая Республика)Корея (Демократическая Народная Республика)Корея (Республика)КосовоКоста-РикаКот-д’ИвуарКубаКувейтКюрасаоЛаосская Народно-Демократическая РеспубликаЛатвияЛесотоЛиберияЛиванЛивияЛитваЛихтенштейнЛюксембургМаврикийМавританияМадагаскарМайоттаМакаоМалавиМалайзияМалиМальдивыМальтаМароккоМартиникаМаршалловы островаМексикаМикронезия (Федеративные Штаты)МозамбикМолдова (Республика)МонакоМонголияМонтсерратМьянмаНамибияНауруНепалНигерНигерияНидерландыНикарагуаНиуэНовая ЗеландияНовая КаледонияНорвегияОбъединённые Арабские ЭмиратыОманОстров БувеОстров МэнОстров НорфолкОстров РождестваОстров Херд и острова МакдональдОстрова КукаОстрова ПиткэрнОстрова Св. Елены, Вознесения и Тристан-да-КуньяОстрова Теркс и КайкосПакистанПалауПалестина (Государство)ПанамаПапуа-Новая ГвинеяПарагвайПеруПольшаПортугалияПуэрто-РикоРеюньонРоссийская ФедерацияРуандаРумынияСальвадорСамоаСан-МариноСан-Томе и ПринсипиСаудовская АравияСеверная Македония (Республика)Северные Марианские островаСейшельские ОстроваСен-Мартен (Голландская часть)Сен-Мартен (владение Франции)Сен-Пьер и МикелонСенегалСент-БартельмиСент-Винсент и ГренадиныСент-Китс и НевисСент-ЛюсияСербияСингапурСирийская Арабская РеспубликаСловакияСловенияСоединенное Королевство Великобритании и Северной ИрландииСоединенные Штаты АмерикиСоломоновы ОстроваСомалиСуданСуринамСьерра-ЛеонеТаджикистанТаиландТайвань, Китайская РеспубликаТанзания (Объединенная Республика)ТогоТокелауТонгаТринидад и ТобагоТувалуТунисТуркменистанУгандаУзбекистанУкраинаУоллис и ФутунаУругвайФарерские островаФиджиФилиппиныФинляндияФолклендские ОстроваФранцияФранцузская ГвианаФранцузская ПолинезияФранцузские южные территорииХорватияЦентральноафриканская РеспубликаЧадЧерногорияЧехияЧилиШвейцарияШвецияШпицберген и Ян-МайенШри-ЛанкаЭквадорЭкваториальная ГвинеяЭритреяЭсватини (Королевство)ЭстонияЭфиопияЮжная АфрикаЮжная Георгия и Южные Сандвичевы островаЮжный СуданЯмайкаЯпонияCountry

состав и свойства — Информация

Пластиковый корпус и два контакта для подключения проводов. Именно так представляется автомобильный аккумулятор большинству из современных владельцев авто. Однако чтобы эксплуатировать его максимально эффективно, безопасно и без неожиданных сюрпризов, о батарее стоит знать немного больше.

 

Сегодня речь пойдет о столь важной составляющей конструкции авто и мото аккумуляторов, как электролит. Он представляет собой раствор серной кислоты, которая считается, пожалуй, одним из ключевых химических соединений в мире. Это обусловлено широким спектром ее применения. Раствор серной кислоты продается под различными наименованиями, которые зависят от степени крепости, а также уровня чистоты. Приведем несколько распространенных примеров:

 

  • Камерная кислота – раствор серной кислоты с водой в пропорции от 60:40 до 70:30.
  • Башенная кислота – раствор с соотношением от 75:25 до 82:18.
  • Купоросное масло с содержанием серной кислоты до 97%.
  • 100% серная кислота – моногидрат.

 

Если говорить о максимальной крепости, получаемой способом выпаривания, то этот параметр может достигать 98,5%. Однако для заправки аккумуляторных батарей ключевое значение приобретает чистота растворов купоросного масла с химической точки зрения.

 

Отметим также, что концентрированной серной кислотой называется совершенно прозрачная жидкость, не имеющая ни цвета, ни запаха. Она обладает консистенцию легкого масла. Ее удельный вес составляет 1б84 при температуре 15°С. В ней содержится примерно 95% серной кислоты. Концентрат может смешиваться с водой в любой пропорции. Изготавливая электролит в бытовых условиях, следует помнить, что смешивание воды и кислоты вызывает выделение значительного количества тепла. Температура кипения концентрированной серной кислоты составляет 338 градусов Цельсия.

 

Интересным фактом из курса химии является сокращение объема раствора. Примечательно то, что при смешении двух объемов серной кислоты и воды, соответственно, их итоговый объем будет меньше, чем суммарный.

 

Также обратите внимание на то, что удельный вес или плотность электролита авто или мото аккумулятора имеет непосредственную зависимость от тех температур, при которых работают аккумуляторы. Так, при эксплуатации в условиях низких температур нужен более плотный электролит. А в жарких странах – напротив – плотность электролита сознательно снижается. Это объясняется тем, что при таких температурах существенно повышается химическая активность раствора.

 

В заключение отметим, что плотность электролита также зависит от того, в каких режимах эксплуатируется батарея. Так, данный параметр для тяговых аккумуляторов обычно составляет 1.26 кг\с м³ , пусковые и осветительные источники питания имеют плотность до 1.3 кг\с м³ и т.д. Для автомобильных аккумуляторных батарей эта характеристика читается нормой, когда составляет 1.28 кг\с м³ .

23.08.2013, 75477 просмотров.

Как обслуживать свинцово-кислотный аккумулятор

Вы здесь

Главная » Новости » Как обслуживать свинцово-кислотный аккумулятор

Пт, 08.09.2019 - 12:05 -- Аноним (не проверено)

Сделать Вы знаете основную причину, по которой свинцово-кислотные аккумуляторы выходят из строя и теряют емкость? Сульфатация аккумулятора. Это причина этих проблем в 80% случаев. Но с правильными инструментами для обслуживания аккумуляторов и небольшими затратами времени вы вернете свои аккумуляторы к жизни и обеспечите их надежную работу. Узнайте все, что вам нужно знать об обслуживании аккумуляторов.

Стартерные батареи, полутяговые батареи, тяговые батареи и даже стационарные батареи нуждаются в обслуживании, чтобы полностью раскрыть свой потенциал. Регулярно выполняйте три основные задачи по техническому обслуживанию, описанные здесь, чтобы оптимизировать производительность и надежность ваших свинцово-кислотных аккумуляторов.

 

Добавьте дистиллированную воду в свинцово-кислотный аккумулятор

Жидкость в свинцово-кислотном аккумуляторе называется электролитом. На самом деле это смесь серной кислоты и воды. Когда аккумулятор заряжается, электролит нагревается, и часть воды испаряется. Во время процесса, называемого электролизом, вода распадается на газообразные водород и кислород, которые рассеиваются. Результат? Уровень электролита в аккумуляторе со временем снижается.

Если уровень электролита слишком низкий, обнажаются пластины в элементах батареи, которые могут быть повреждены. Кроме того, серная кислота будет более концентрированной. Это означает, что вам нужно заменить электролит. Вот как вы это делаете.

1. Проверьте уровень воды в аккумуляторе с помощью индикатора уровня

Как узнать, когда нужно доливать воду в аккумулятор? Это один из самых частых вопросов, которые нам задают. Вы можете постоянно проверять свою батарею или каждую батарею в каждой машине вашего автопарка, но это занимает ужасно много времени, и есть более простые подходы. Индикаторы специально разработаны для проверки уровня воды в аккумуляторе. Они уведомляют вас всякий раз, когда ваша батарея должна быть пополнена.

Доступны различные системы. Одним из них является Smartblinky. Вы монтируете его за разъемом аккумулятора. У него есть зеленый свет? Уровень электролита в норме. Когда индикатор становится красным, вы знаете, что пришло время добавить воды в элементы батареи.

Вы добавляете воду в аккумулятор до или после зарядки? Перед зарядкой всегда проверяйте, чтобы электролит покрыл пластины аккумулятора. Если пластины закрыты, зарядите аккумулятор, а затем долейте по мере необходимости. Это связано с тем, что электролит будет расширяться во время зарядки и, скорее всего, переполнится, если вы уже долили его до зарядки.

 2. Убедитесь, что рядом всегда есть дистиллированная вода.

Никогда не заполняйте аккумулятор обычной водой. Это повредит вашу батарею. Необходимо использовать дистиллированную воду. Она также известна как деионизированная вода и деминерализованная вода. По сути, это вода, отфильтрованная для удаления металлов и минералов, которые могут мешать процессам в вашей батарее.

Купите дистиллированную воду в хозяйственном магазине или у продавца автомобильных запчастей. Также легко сделать самому. Вам нужна простая водопроводная вода и устройство для деминерализации, такое как Hydropure. Самые простые из этих устройств заполнены смолой. Вы позволяете водопроводной воде течь, смола отфильтровывает металлы и минералы из воды, и у вас остается деионизированная, деминерализованная, дистиллированная вода, подходящая для использования с вашей батареей.

 3. Установите автоматическую систему залива воды в аккумулятор

Сколько дистиллированной воды вы добавляете в аккумулятор? Это еще один вопрос, который нам часто задают. Ответ варьируется от одной батареи к другой. Это одна из причин, по которой мы рекомендуем использовать систему заливки воды в аккумулятор.

В системе заливки воды для аккумуляторов используются заливные крышки с поплавками, которые соединяются друг с другом водяными шлангами. Они предохраняют вашу батарею от переполнения. И они экономят ваше время. Все, что вам нужно сделать, это налить дистиллированную воду в шланг. Заправочная система сделает все остальное.

Выравнивание уровня свинцово-кислотного аккумулятора

Второй задачей обслуживания аккумулятора является зарядка. Очень важно, чтобы вы заряжали аккумуляторные батареи равномерно.

Чем больше вы используете аккумулятор, тем больше может колебаться емкость различных элементов. Одна ячейка может быть полностью заряжена, а другая — только наполовину. Если это произойдет, ваша батарея не будет заряжаться полностью.

Мы рекомендуем использовать уравнительное зарядное устройство для выполнения уравнительного заряда. Выравнивание заряда батареи — это простой процесс, который предотвращает это. Ваше зарядное устройство обеспечивает меньший ток в течение более длительного периода времени. В то время как типичный цикл зарядки длится около восьми часов, выравнивание занимает около одиннадцати часов. Поскольку он также требует более длительного времени охлаждения, чем обычный цикл зарядки, лучше всего выполнить выравнивающую зарядку в выходные дни, чтобы у вас было достаточно времени для зарядки и охлаждения аккумулятора, прежде чем вы снова начнете его использовать.

Что делать, если ваша батарея уже страдает от сульфатации? К счастью, сульфатацию можно контролировать и даже уменьшить. Просто посылайте большие токи короткой продолжительности через батарею. Этот процесс называется восстановлением аккумулятора.

Держите аккумулятор в чистоте

И последнее, но не менее важное: очень важно содержать аккумулятор в чистоте.

Аккумуляторная кислота, грязь и пыль, как известно, вызывают токи утечки, из-за которых батарея разряжается и становится неуравновешенной. Нужен чистый аккумулятор. Лучший способ сделать это? Используйте аккумуляторный пароочиститель, такой как AQ steam или AQ steam pro.

У вас есть вопросы по любой из этих задач по обслуживанию аккумуляторов? Хотите знать, какие продукты лучше всего подходят для обслуживания ваших свинцово-кислотных аккумуляторов? Вы найдете ответы — и все остальное, что вам нужно знать — в нашем профессиональном руководстве по обслуживанию аккумуляторов. Нажмите на кнопку, чтобы посмотреть его онлайн.

Загрузите наше руководство по обслуживанию аккумуляторов

Для использования этой формы у вас должен быть включен JavaScript.

  • ‹ Предыдущие
  • Далее ›

Свинцово-кислотные аккумуляторы | PVEducation

5 Свинцово-кислотные батареи

Свинцово-кислотные батареи являются наиболее часто используемым типом батарей в фотогальванических системах. Хотя свинцово-кислотные батареи имеют низкую плотность энергии, лишь умеренную эффективность и высокие требования к обслуживанию, они также имеют длительный срок службы и низкие затраты по сравнению с другими типами батарей. Одним из исключительных преимуществ свинцово-кислотных аккумуляторов является то, что они являются наиболее часто используемой формой аккумуляторов для большинства применений перезаряжаемых аккумуляторов (например, в пусковых двигателях автомобилей) и, следовательно, имеют хорошо зарекомендовавшую себя зрелую технологическую базу.

Рисунок: Изменение напряжения в зависимости от уровня заряда для нескольких различных типов батарей.

Свинцово-кислотный аккумулятор состоит из отрицательного электрода, изготовленного из губчатого или пористого свинца. Свинец является пористым, чтобы облегчить образование и растворение свинца. Положительный электрод состоит из оксида свинца. Оба электрода погружены в электролитический раствор серной кислоты и воды. В случае, если электроды соприкасаются друг с другом в результате физического перемещения батареи или изменения толщины электродов, два электрода разделяет электрически изолирующая, но химически проницаемая мембрана. Эта мембрана также предотвращает короткое замыкание через электролит. Свинцово-кислотные аккумуляторы накапливают энергию за счет обратимой химической реакции, показанной ниже.

Общая химическая реакция:

PbO2+Pb+2h3SO4⇔заряд-разряд2PbSO4+2h3O

На отрицательной клемме реакции заряда и разряда:

Pb+SO42-⇔заряд-разряд PbSO4+2e-

реакции заряда и разряда:

PbO2+SO42-+4H++2e-⇔заряд-разряд PbSO4+2h3O

Как показывают приведенные выше уравнения, разрядка батареи вызывает образование кристаллов сульфата свинца как на отрицательной, так и на положительной клеммах. как высвобождение электронов из-за изменения валентного заряда свинца. Для образования этого сульфата свинца используется сульфат из сернокислотного электролита, окружающего батарею. В результате электролит становится менее концентрированным. Полный разряд приведет к тому, что оба электрода будут покрыты сульфатом свинца и водой, а не серной кислотой, окружающей электроды. При полном разряде два электрода изготовлены из одного и того же материала, и между ними отсутствует химический потенциал или напряжение. На практике, однако, разрядка прекращается при напряжении отсечки, задолго до этого момента. Поэтому аккумулятор не должен разряжаться ниже этого напряжения.

В промежутке между полностью разряженным и заряженным состояниями свинцово-кислотная батарея испытывает постепенное снижение напряжения. Уровень напряжения обычно используется для индикации состояния заряда батареи. Зависимость аккумулятора от состояния заряда аккумулятора показана на рисунке ниже. Если аккумулятор оставить в состоянии низкого заряда в течение длительного периода времени, могут вырасти крупные кристаллы сульфата свинца, что необратимо снизит емкость аккумулятора. Эти более крупные кристаллы отличаются от типичной пористой структуры свинцового электрода, и их трудно превратить обратно в свинец.

Реакция зарядки превращает сульфат свинца на отрицательном электроде в свинец. На положительном полюсе реакция превращает свинец в оксид свинца. В качестве побочного продукта этой реакции выделяется водород. В течение первой части цикла зарядки доминирующей реакцией является превращение сульфата свинца в свинец и оксид свинца. Однако по мере того, как зарядка продолжается и большая часть сульфата свинца превращается либо в свинец, либо в диоксид свинца, зарядный ток электролизует воду из электролита, и выделяются газообразные водород и кислород, процесс, известный как «загазование» батареи. Если ток подается на батарею быстрее, чем может быть преобразован сульфат свинца, то выделение газа начинается до того, как весь сульфат свинца будет преобразован, то есть до того, как батарея будет полностью заряжена. Газирование создает несколько проблем для свинцово-кислотных аккумуляторов. Выделение газа из батареи не только вызывает опасения по поводу безопасности из-за взрывоопасной природы образующегося водорода, но также приводит к уменьшению количества воды в батарее, которую необходимо заменять вручную, вводя в систему компонент обслуживания. Кроме того, выделение газа может привести к выделению активного материала из электролита, что приведет к необратимому снижению емкости аккумулятора. По этим причинам аккумулятор не следует регулярно заряжать выше напряжения, вызывающего газообразование. Напряжение газообразования изменяется в зависимости от скорости заряда.

Сульфат свинца является изолятором, поэтому то, как сульфат свинца образуется на электродах, определяет, насколько легко может разрядиться батарея.

Для большинства систем возобновляемой энергии наиболее важными характеристиками батареи являются срок службы батареи, глубина разрядки и требования к обслуживанию батареи. Этот набор параметров и их взаимосвязь с режимами зарядки, температурой и возрастом описаны ниже.

Глубина разряда в сочетании с емкостью батареи является фундаментальным параметром при проектировании блока батарей для фотоэлектрической системы, поскольку энергия, которую можно извлечь из батареи, определяется путем умножения емкости батареи на глубину разряда . Аккумуляторы классифицируются как аккумуляторы с глубоким или неглубоким циклом. Батарея глубокого разряда будет иметь глубину разряда более 50% и может достигать 80%. Чтобы достичь такой же полезной емкости, банк батарей с неглубоким циклом должен иметь большую емкость, чем банк батарей с глубоким циклом.

Помимо глубины разрядки и номинальной емкости аккумулятора, на мгновенную или доступную емкость аккумулятора сильно влияют скорость разряда аккумулятора и рабочая температура аккумулятора. Емкость аккумулятора падает примерно на 1% на каждый градус ниже 20°C. Тем не менее, высокие температуры также не идеальны для аккумуляторов, так как они ускоряют старение, саморазряд и использование электролита. На приведенном ниже графике показано влияние температуры аккумулятора и скорости разряда на емкость аккумулятора.

Рисунок: Зависимость между емкостью аккумулятора, температурой и скоростью разряда.

Со временем емкость батареи снижается из-за сульфатации батареи и выпадения активного материала. Снижение емкости аккумуляторной батареи наиболее сильно зависит от взаимосвязи между следующими параметрами:

  • режим заряда/разряда, в котором находилась батарея
  • DOD батареи в течение срока службы
  • его подверженность длительным периодам низкой разрядки
  • средняя температура батареи за время ее жизни

На следующем графике показано изменение функции батареи в зависимости от количества циклов и глубины разрядки свинцово-кислотной батареи с малым циклом. Свинцово-кислотная батарея глубокого цикла должна иметь срок службы более 1000 циклов даже при глубине разряда более 50%.

Рисунок: Зависимость между емкостью батареи, глубиной разрядки и сроком службы для батареи с малым циклом.

Помимо DOD, режим зарядки также играет важную роль в определении срока службы батареи. Перезарядка или недозарядка батареи приводит либо к осыпанию активного материала, либо к сульфатации батареи, что значительно сокращает срок службы батареи.

Рисунок: Влияние режима зарядки на емкость аккумулятора.

Окончательное влияние на зарядку аккумулятора оказывает температура аккумулятора. Хотя емкость свинцово-кислотного аккумулятора снижается при работе при низких температурах, работа при высоких температурах увеличивает скорость старения аккумулятора.

Рисунок: Зависимость между емкостью батареи, температурой и сроком службы для батареи глубокого разряда.

Кривые разрядки постоянным током для свинцово-кислотной батареи емкостью 550 Ач при различных скоростях разряда с предельным напряжением 1,85 В на элемент (Mack, 1979). Более длительное время разрядки дает более высокую емкость батареи.

Производство и утечка водорода и газообразного кислорода из батареи приводит к потере воды, поэтому в свинцово-кислотных батареях необходимо регулярно заменять воду. Другие компоненты аккумуляторной системы не требуют регулярного обслуживания, поэтому потеря воды может стать серьезной проблемой. Если система находится в удаленном месте, проверка потери воды может увеличить расходы. Аккумуляторы, не требующие обслуживания, ограничивают потребность в постоянном внимании, предотвращая или уменьшая количество газа, выходящего из аккумулятора. Однако из-за коррозионной природы электролита все батареи в той или иной степени вносят дополнительный компонент обслуживания в фотоэлектрическую систему.

Свинцово-кислотные батареи обычно имеют кулоновскую эффективность 85% и энергоэффективность порядка 70%.

В зависимости от того, какая из вышеперечисленных проблем вызывает наибольшую озабоченность в конкретном приложении, соответствующие модификации базовой конфигурации батареи повышают ее производительность. При использовании возобновляемых источников энергии вышеуказанные проблемы будут влиять на глубину разряда, срок службы батареи и требования к техническому обслуживанию. Изменения в батарее обычно связаны с модификацией в одной из трех основных областей:

  • изменения состава и геометрии электрода
  • заменяет раствор электролита
  • модификаций корпуса или клемм аккумуляторной батареи для предотвращения или уменьшения утечки образующегося газообразного водорода.

Залитые свинцово-кислотные аккумуляторы характеризуются глубокими циклами и длительным сроком службы. Однако залитые батареи требуют периодического обслуживания. Мало того, что уровень воды в электролите должен регулярно контролироваться путем измерения его удельного веса, эти батареи также требуют «ускоренной зарядки».

Ускоренная зарядка

Ускоренная или выравнивающая зарядка включает кратковременный перезаряд, при котором выделяется газ и смешивается электролит, что предотвращает расслоение электролита в аккумуляторе. Кроме того, ускоренная зарядка также помогает поддерживать одинаковую емкость всех аккумуляторов. Например, если одна батарея имеет более высокое внутреннее последовательное сопротивление, чем другие батареи, то батарея с более низким значением SR будет постоянно недозаряжаться во время нормального режима зарядки из-за падения напряжения на последовательном сопротивлении. Однако, если аккумуляторы заряжаются при более высоком напряжении, то это позволяет полностью зарядить все аккумуляторы.

Удельный вес (SG)

Залитая батарея подвержена потере воды из электролита из-за выделения газообразного водорода и кислорода. Удельный вес электролита, который можно измерить ареометром, укажет на необходимость добавления воды в аккумуляторы, если аккумуляторы полностью заряжены. С другой стороны, ареометр точно покажет SOC батареи, если известно, что уровень воды правильный. SG периодически измеряется после ускоренной зарядки, чтобы убедиться, что в аккумуляторе достаточно воды в электролите. SG батареи должен быть предоставлен производителем.

Особые указания для гелевых, герметичных свинцово-кислотных аккумуляторов

Гелевые или AGM-свинцово-кислотные аккумуляторы (которые обычно герметичны или регулируются клапаном) имеют несколько потенциальных преимуществ:

 

  • они могут подвергаться глубокому циклированию при сохранении срока службы аккумулятора
  • им не нужна ускоренная зарядка
  • требуют меньше обслуживания.

Однако для этих аккумуляторов обычно требуется более точный режим зарядки с более низким напряжением. Режим зарядки с более низким напряжением обусловлен использованием свинцово-кальциевых электродов для минимизации газовыделения, но для минимизации газовыделения от батареи требуется более точный режим зарядки. Кроме того, эти батареи могут быть более чувствительными к перепадам температуры, особенно если режим зарядки не компенсирует температуру или не предназначен для этих типов батарей.

Аккумулятор для фотоэлектрической системы будет рассчитан на определенное количество циклов при определенном DOD, режиме зарядки и температуре. Однако аккумуляторы могут испытывать либо преждевременную потерю емкости, либо внезапный выход из строя по целому ряду причин. Внезапный отказ может быть вызван внутренним коротким замыканием батареи из-за выхода из строя электрического сепаратора внутри батареи. Короткое замыкание в аккумуляторе снизит напряжение и емкость всего блока аккумуляторов, особенно если секции аккумулятора соединены параллельно, а также приведет к другим потенциальным проблемам, таким как перезарядка оставшихся аккумуляторов. Батарея также может выйти из строя из-за обрыва цепи (то есть может иметь место постепенное увеличение внутреннего последовательного сопротивления), и это также повлияет на любые батареи, соединенные последовательно с этой батареей. Замерзание аккумулятора, в зависимости от типа используемого свинцово-кислотного аккумулятора, также может привести к необратимому выходу аккумулятора из строя.

Постепенное снижение емкости может усугубляться неправильной эксплуатацией, в частности ухудшением DOD. Однако работа одной части аккумуляторной батареи в условиях, отличных от другой, также приведет к снижению общей емкости и увеличению вероятности выхода из строя батареи. Аккумуляторы могут непреднамеренно эксплуатироваться в различных режимах либо из-за колебаний температуры, либо из-за выхода из строя батареи в одной цепочке батарей, что приводит к неравномерному заряду и разряду в цепочке.

Установка

Установка батарей должна производиться в соответствии с действующим стандартом страны, в которой они устанавливаются. В настоящее время существуют австралийские стандарты AS3011 и AS2676 для установки батарей. Существует также проект стандарта для батарей для приложений RAPS, который в конечном итоге станет австралийским стандартом.

Среди других факторов, которые следует учитывать при установке аккумуляторной системы, — вентиляция, необходимая для определенного типа аккумуляторной батареи, условия заземления, на которых должна быть размещена аккумуляторная батарея, и меры, принятые для обеспечения безопасности тех, кто может иметь доступ к блоку батарей. Кроме того, при установке блока аккумуляторов необходимо следить за тем, чтобы температура аккумулятора находилась в пределах допустимых условий эксплуатации аккумулятора и чтобы температура аккумуляторов в блоке аккумуляторов большего размера была одинаковой. Аккумуляторы в очень холодных условиях могут замерзнуть при низком уровне заряда, поэтому зимой аккумулятор с большей вероятностью будет находиться в состоянии низкого заряда. Чтобы предотвратить это, блок аккумуляторов можно закопать под землю. Батареи, регулярно подвергающиеся воздействию высоких рабочих температур, также могут сократить срок службы.

Аккумуляторы потенциально опасны, и пользователи должны знать о трех основных опасностях: Серная кислота в электролите вызывает коррозию. Защитная одежда в дополнение к средствам защиты ног и глаз необходима при работе с батареями.

Аккумуляторы способны генерировать большой ток. Если металлический предмет случайно положить на клеммы батареи, через него может протекать сильный ток. Наличие ненужных металлических предметов (например, ювелирных изделий) должно быть сведено к минимуму при работе с батареями, а инструменты должны иметь изолированные ручки.

 

Опасность взрыва из-за выделения газообразного водорода и кислорода. Во время зарядки, особенно перезарядки, некоторые аккумуляторы, в том числе большинство аккумуляторов, используемых в фотоэлектрических системах, могут выделять потенциально взрывоопасную смесь газообразного водорода и кислорода. Чтобы снизить риск взрыва, используется вентиляция для предотвращения накопления этих газов, а потенциальные источники воспламенения (т. е. цепи, которые могут генерировать искры или дуги) удаляются из корпуса батареи.

Аккумуляторы представляют компонент периодического обслуживания в фотоэлектрической системе. Для всех аккумуляторов, включая «необслуживаемые» аккумуляторы, требуется график технического обслуживания, который должен гарантировать, что:

  • клеммы аккумулятора не покрыты коррозией
  • соединения аккумулятора тугие
  • корпус аккумулятора не должен иметь трещин и следов коррозии.

Залитые аккумуляторы требуют дополнительного и более частого обслуживания. Для залитых аккумуляторов необходимо регулярно проверять уровень электролита и плотность электролита для каждого аккумулятора. Проверку удельного веса аккумулятора с помощью ареометра следует проводить не менее чем через 15 минут после уравнительного или ускоренного заряда. В аккумуляторы следует заливать только дистиллированную воду. Водопроводная вода содержит минералы, которые могут повредить электроды аккумулятора.

Свинец в свинцово-кислотном аккумуляторе представляет опасность для окружающей среды, если его не утилизировать должным образом. Свинцово-кислотные батареи следует перерабатывать, чтобы можно было восстановить свинец, не нанося ущерба окружающей среде.

 

Материалы, из которых изготовлены электроды, оказывают большое влияние на химический состав батареи и, следовательно, на напряжение батареи и ее зарядно-разрядные характеристики. Геометрия электрода определяет внутреннее последовательное сопротивление и скорость зарядки и разрядки.

Основными материалами анода и катода в свинцово-кислотной батарее являются свинец и диоксид свинца (PbO2). Свинцовый электрод выполнен в виде губчатого свинца. Желателен губчатый свинец, так как он очень пористый, и поэтому площадь поверхности между свинцом и сернокислотным электролитом очень велика. Добавление небольших количеств других элементов к свинцовому электроду для образования свинцовых сплавов может уменьшить некоторые недостатки, связанные со свинцом. Основные типы используемых электродов: свинец/сурьма (с использованием нескольких процентов сурьмы), сплавы свинца/кальция и сплавы свинца/сурьмы/кальция.

Батареи из сплава сурьмы и свинца имеют ряд преимуществ по сравнению с электродами из чистого свинца. К этим преимуществам относятся: более низкая стоимость свинца/сурьмы; повышенная прочность свинцово-сурьмяного электрода; и способность к глубокому разряду в течение короткого периода времени. Однако сплавы свинца и сурьмы подвержены сульфатации, и их нельзя оставлять при низком уровне заряда на продолжительное время. Кроме того, сплавы свинца и сурьмы увеличивают газовыделение батареи во время зарядки, что приводит к высоким потерям воды. Поскольку в эти батареи необходимо добавлять воду, они требуют более высокого обслуживания. Кроме того, свинцово-сурьмяные батареи имеют высокую скорость разряда и короткий срок службы. Эти проблемы (хх - проверьте, вызваны ли обе проблемы гальванопокрытием)) вызваны растворением сурьмы на одном электроде и ее отложением или гальванопокрытием на другом электроде. (xx повышенная адгезия PbO2 xx)

Свинцово-кальциевые батареи представляют собой технологию промежуточной стоимости. Как и сурьма, кальций также увеличивает прочность свинца отрицательного электрода, но, в отличие от сурьмы, добавление кальция снижает газообразование батареи, а также снижает скорость саморазряда. Однако свинцово-кальциевые аккумуляторы не следует сильно разряжать. Следовательно, эти типы батарей можно считать «необслуживаемыми», но они относятся только к батареям с коротким циклом.

Добавление в электроды сурьмы, а также кальция обеспечивает некоторые из преимуществ как сурьмы, так и свинца, но при повышенной стоимости. Подобные аккумуляторы с глубоким разрядом также могут иметь длительный срок службы. Кроме того, в электроды могут быть добавлены следовые количества других материалов для повышения производительности батареи.

В дополнение к материалу, используемому для изготовления электродных пластин, физическая конфигурация электродов также влияет на скорость зарядки и разрядки и на срок службы. Тонкие пластины обеспечивают более быструю зарядку и разрядку, но менее прочны и более склонны к осыпанию материала с пластин. Поскольку высокие зарядные или разрядные токи обычно не являются обязательной характеристикой батарей для систем возобновляемой энергии, можно использовать более толстые пластины, которые имеют меньшее время зарядки и разрядки, но также имеют более длительный срок службы.

В открытой залитой батарее любой образующийся газ может попасть в атмосферу, вызывая как проблемы с безопасностью, так и проблемы с техническим обслуживанием. Герметичная свинцово-кислотная (SLA), свинцово-кислотная батарея с регулируемым клапаном (VRLA) или рекомбинированная свинцово-кислотная батарея предотвращают потерю воды из электролита, предотвращая или сводя к минимуму утечку газообразного водорода из батареи. В герметичном свинцово-кислотном (SLA) аккумуляторе водород не уходит в атмосферу, а перемещается или мигрирует к другому электроду, где он рекомбинирует (возможно, с помощью процесса каталитической конверсии) с образованием воды. Вместо того, чтобы быть полностью герметичными, эти батареи имеют клапан сброса давления, чтобы предотвратить накопление избыточного давления в батарее. Герметичные батареи требуют строгого контроля зарядки, чтобы предотвратить накопление водорода быстрее, чем он может рекомбинировать, но они требуют меньше обслуживания, чем открытые батареи.

Свинцово-кислотные аккумуляторы с регулируемым клапаном (VRLA) по своей концепции аналогичны герметичным свинцово-кислотным аккумуляторам (SLA), за исключением того, что клапаны должны выделять некоторое количество водорода почти при полном заряде. Аккумуляторы SLA или VRLA обычно имеют дополнительные конструктивные особенности, такие как использование гелеобразных электролитов и использование свинцово-кальциевых пластин для сведения к минимуму выделения газообразного водорода.

Несмотря на разнообразие типов батарей и областей применения, особенно важными характеристиками в фотоэлектрических приложениях являются требования к обслуживанию батареи и возможность глубокой зарядки батареи при сохранении длительного срока службы. Чтобы обеспечить длительный срок службы при глубоком разряде, батареи глубокого цикла могут быть либо открытого типа, с избытком электролитического раствора и толстыми пластинами, либо батареи с иммобилизованным электролитом. Герметичные гелевые батареи могут быть классифицированы как батареи глубокого цикла, но они обычно выдерживают меньше циклов и более низкие разряды, чем специально разработанные батареи с залитыми пластинами или батареи AGM. В батареях с малым циклом обычно используются более тонкие пластины, изготовленные из свинцово-кальциевых сплавов, и глубина разряда обычно не превышает 25%.

Аккумуляторы для фотоэлектрических или удаленных источников питания (RAPS)

Строгие требования к батареям, используемым в фотогальванических системах, побудили некоторых производителей производить батареи, специально предназначенные для фотоэлектрических или других удаленных систем питания. Батареи, наиболее часто используемые в автономных фотоэлектрических системах, представляют собой свинцово-кислотные батареи с глубоким циклом или необслуживаемые батареи с более коротким циклом. Аккумуляторы глубокого цикла могут быть открытыми залитыми батареями (которые не требуют обслуживания) или батареями AGM с невыпадающим электролитом, которые не требуют обслуживания (но требуют осторожности при выборе регулятора). Специальные необслуживаемые батареи с коротким циклом, выдерживающие нечастую разрядку, также могут использоваться в фотоэлектрических приложениях, и при условии, что блок батарей спроектирован соответствующим образом, никогда не требуется глубина разряда более 25%. Батарея с длительным сроком службы в надлежащим образом спроектированной фотоэлектрической системе при правильном обслуживании может прослужить до 15 лет, но использование батарей, не рассчитанных на длительный срок службы или условий в фотоэлектрической системе, или являющихся частью плохой конструкции системы может привести к тому, что банк батарей выйдет из строя всего через несколько лет.

Доступны несколько других типов батарей специального назначения, которые описаны ниже.

Батареи пусковые, осветительные запальные (СЛИ). Эти батареи используются в автомобильной промышленности и имеют высокую скорость разрядки и зарядки. Чаще всего используют электродные пластины, укрепленные либо свинцово-сурьмяным в залитой конфигурации, либо свинцово-кальциевым в герметичной конфигурации. Эти батареи имеют хороший срок службы в условиях мелкого цикла, но очень плохой срок службы при глубоком цикле. Аккумуляторы SLI не следует использовать в фотоэлектрических системах, поскольку их характеристики не оптимизированы для использования в системах с возобновляемыми источниками энергии, поскольку срок службы в фотоэлектрических системах очень мал.

Тяговые или двигательные батареи. Тяговые или двигательные батареи используются для обеспечения электроэнергией небольших транспортных средств, таких как тележки для гольфа. По сравнению с батареями SLI, они имеют большую способность к глубокому циклу при сохранении длительного срока службы. Хотя эта особенность делает их более подходящими для фотоэлектрических систем, чем для систем, в которых используются батареи SLI, батареи с движущей силой не следует использовать ни в каких фотоэлектрических системах, поскольку их скорость саморазряда очень высока из-за использования свинцово-сурьмяных электродов. Высокая скорость саморазряда приведет к большим потерям мощности в батарее и сделает всю фотоэлектрическую систему неэффективной, если только батареи не будут ежедневно испытывать большой DOD. Способность этих батарей выдерживать глубокие циклы также намного ниже, чем у настоящей батареи глубокого цикла. Поэтому эти батареи не подходят для фотоэлектрических систем.

Батареи для жилых автофургонов или морских батарей. Эти батареи, как правило, представляют собой компромисс между батареями SLI, тяговыми батареями и настоящими батареями глубокого цикла. Хотя они не рекомендуются, в некоторых небольших фотоэлектрических системах используются как моторные, так и морские батареи. Срок службы таких батарей будет ограничен в лучшем случае несколькими годами, так что экономичность замены батарей означает, что такие батареи, как правило, не являются экономически эффективным вариантом в долгосрочной перспективе.

Стационарные батареи. Стационарные батареи часто используются для аварийного питания или источников бесперебойного питания. Это батареи с неглубоким циклом, предназначенные для того, чтобы оставаться почти полностью заряженными в течение большей части их срока службы с редкими глубокими разрядами. Их можно использовать в фотоэлектрических системах, если размер блока батарей таков, что его глубина разряда никогда не падает ниже 10–25 %.

Батареи глубокого разряда. Аккумуляторы глубокого разряда должны иметь срок службы в несколько тысяч циклов при высоком уровне разряда (80% и более). С двумя типами батарей глубокого цикла могут наблюдаться большие различия в характеристиках циклов, поэтому следует сравнивать срок службы и глубину разряда различных батарей глубокого цикла.

Свинцово-кислотный аккумулятор состоит из электродов из оксида свинца и свинца, погруженных в раствор слабой серной кислоты. Потенциальные проблемы, возникающие в свинцово-кислотных батареях, включают:

Газообразование: выделение газообразного водорода и кислорода. Газообразование батареи приводит к проблемам с безопасностью и к потере воды из электролита. Потеря воды увеличивает требования к техническому обслуживанию батареи, поскольку воду необходимо периодически проверять и заменять.

Повреждение электродов. Вывод на отрицательном электроде мягкий и легко повреждается, особенно в приложениях, в которых батарея может подвергаться непрерывным или энергичным движениям.

Расслоение электролита. Серная кислота представляет собой тяжелую вязкую жидкость. По мере разрядки аккумулятора концентрация серной кислоты в электролите снижается, а при зарядке концентрация серной кислоты увеличивается. Это циклическое изменение концентрации серной кислоты может привести к расслоению электролита, когда более тяжелая серная кислота остается внизу батареи, а менее концентрированный раствор, вода, остается вверху. Непосредственная близость электродных пластин внутри батареи означает, что физическое встряхивание не смешивает серную кислоту и воду. Однако контролируемое газообразование электролита способствует смешиванию воды и серной кислоты, но его необходимо тщательно контролировать, чтобы избежать проблем с безопасностью и потери воды. В большинстве свинцово-кислотных аккумуляторов требуется периодическое, но нечастое выделение газа из аккумулятора для предотвращения или устранения расслоения электролита в процессе, называемом «ускоренной» зарядкой.

Сульфатация аккумулятора. При низком уровне заряда на свинцовом электроде могут расти большие кристаллы сульфата свинца, в отличие от мелкозернистого материала, который обычно образуется на электродах. Сульфат свинца является изоляционным материалом.

Разлив серной кислоты. Вытекание серной кислоты из корпуса аккумуляторной батареи представляет серьезную угрозу безопасности. Гелеобразование или иммобилизация жидкой серной кислоты снижает вероятность разлива серной кислоты.

Замерзание аккумулятора при низком уровне разряда. Если батарея находится на низком уровне разрядки после превращения всего электролита в воду, то температура замерзания электролита также снижается.

Потеря активного материала электродов. Потеря активного материала с электродов может происходить в результате нескольких процессов. Одним из процессов, который может вызвать необратимую потерю емкости, является отслаивание активного материала из-за объемных изменений между ххх и сульфатом свинца. Кроме того, ХХХ. Неправильные условия зарядки и выделение газа могут привести к осыпанию активного материала с электродов, что приведет к необратимой потере емкости.

В зависимости от того, какая из вышеперечисленных проблем вызывает наибольшую озабоченность в конкретном приложении, соответствующие модификации базовой конфигурации батареи повышают ее производительность. При использовании возобновляемых источников энергии вышеуказанные проблемы будут влиять на глубину разряда, срок службы батареи и требования к техническому обслуживанию. Изменения в батарее обычно связаны с модификацией в одной из трех основных областей:

  • изменения состава и геометрии электрода
  • заменяет раствор электролита
  • модификаций корпуса или клемм аккумуляторной батареи для предотвращения или уменьшения утечки образующегося газообразного водорода.

Коррозия состоит из набора областей восстановления/окисления, в которых обе реакции протекают на одном и том же электроде. Для аккумуляторной системы коррозия приводит к нескольким пагубным последствиям. Одним из эффектов является преобразование металлического электрода в оксид металла.

Все химические реакции протекают как в прямом, так и в обратном направлении. Для протекания обратной реакции реагенты должны получить достаточно энергии, чтобы преодолеть электрохимическую разницу между реагентами и продуктами, а также перенапряжение. Обычно в аккумуляторных системах вероятность протекания обратной реакции мала, так как мало молекул с достаточно большой энергией. Однако, несмотря на малые размеры, некоторые частицы обладают достаточной энергией. В заряженной батарее существует процесс, посредством которого батарея может разряжаться даже в отсутствие нагрузки, подключенной к батарее. Величина, которую батарея разряжает при стоянии, называется саморазрядом. Саморазряд увеличивается с повышением температуры, потому что большая часть продуктов будет иметь достаточно энергии для протекания реакции в обратном направлении.

Идеальным набором химических реакций для батареи был бы такой, при котором имеется большой химический потенциал, который высвобождает большое количество электронов, имеет низкое перенапряжение, самопроизвольно протекает только в одном направлении и представляет собой единственную химическую реакцию, которая может произойти . Однако на практике существует несколько эффектов, которые ухудшают работу батареи из-за нежелательных химических реакций, таких эффектов, как изменение фазы объема реагентов или продуктов, а также из-за физического движения реагентов и продуктов внутри батареи.

Во время химических реакций многие материалы изменяются либо в фазе, либо, если они остаются в той же фазе, объем и плотность материала могут изменяться в результате химической реакции. Наконец, материалы, используемые в батарее, в первую очередь анод и катод, могут изменить свою кристалличность или структуру поверхности, что, в свою очередь, повлияет на реакции в батарее. Многие компоненты в окислительно-восстановительных реакциях претерпевают фазовый переход либо при окислении, либо при восстановлении. Например, в свинцово-кислотном аккумуляторе ионы сульфата переходят из твердой формы (в виде сульфата свинца) в растворы (в виде серной кислоты). Если сульфат свинца рекристаллизуется где-либо, кроме анода или катода, то этот материал теряется в аккумуляторной системе. При зарядке в электронном обмене могут участвовать только материалы, соединенные с анодом и катодом, и поэтому, если материал не касается анода или катода, то он уже не может быть перезаряжен. Образование газовой фазы в аккумуляторе также представляет особые проблемы. Во-первых, газовая фаза обычно имеет больший объем, чем исходные реагенты, что приводит к изменению давления в батарее. Во-вторых, если предполагаемые продукты находятся в газообразном состоянии, они должны быть ограничены анодом и катодом, иначе они не смогут быть заряжены.

Изменение громкости также обычно отрицательно сказывается на работе батареи.

В стандартной «затопленной» свинцово-кислотной батарее электроды погружены в жидкую серную кислоту. Несколько модификаций электролита используются для улучшения характеристик батареи в одной из нескольких областей. Ключевыми параметрами электролита, которые контролируют работу батареи, являются объем и концентрация электролита, а также образование «захваченного» электролита.

Изменение объема электролита может быть использовано для повышения надежности батареи. Увеличение объема электролита делает аккумулятор менее чувствительным к потерям воды и, следовательно, делает регулярное техническое обслуживание менее критичным. Увеличение объема батареи также увеличит ее вес и снизит плотность энергии батареи.

В батареях с «неподвижным» электролитом серная кислота иммобилизуется либо путем «желирования» серной кислоты, либо с помощью «абсорбирующего стеклянного мата». Оба имеют более низкое выделение газа по сравнению с залитой свинцово-кислотной батареей и, следовательно, часто встречаются в герметичных свинцово-кислотных батареях, не требующих обслуживания.

Геллинг. В «гелеобразной» свинцово-кислотной батарее электролит может быть иммобилизован путем гелеобразования серной кислоты с использованием силикагеля. Преимущество гелеобразного электролита заключается в том, что газовыделение уменьшается, и, следовательно, батареи не требуют особого обслуживания. Кроме того, в гелеобразных батареях не происходит расслоения электролита и, следовательно, не требуется ускоренная зарядка, а поскольку электролит гелеобразен, также снижается вероятность разлива серной кислоты. Однако для дальнейшего снижения газовыделения в этих батареях с «гелевыми элементами» также обычно используются свинцово-кальциевые пластины, что делает их непригодными для приложений с глубоким разрядом.


Learn more

     ico 3M  ico armolan  ico suntek  ico llumar ico nexfil ico suncontrol jj rrmt aswf