logo1

logoT

 

Пластичная смазка это


Пластичные смазки – назначение и составляющие компоненты | SUPROTEC

Пластичные смазки – специальные технические составы, имеющие двухкомпонентную основу. По классификации располагаются между жидкими и твердыми смазками. Это позволяет им найти применение в тех узлах качения и парах трения, где организовать постоянную смазывающую циркуляцию не представляется возможным.

Ключевые вектора использования пластичных смазок:

  • подшипники и ступицы;
  • амортизаторы и сальники;
  • канаты и их сердечники;
  • шарниры;
  • винтовые и цепные передачи;
  • редукторы;
  • прочие трущиеся и движущиеся узлы.

Свойства пластичных смазок определяет их состав. Основным компонентом, как правило, является жидкое масло. Его доля в объеме вещества до 90%. Дополнительными элементами состава являются загустители и добавки. В общей массе вещества они могут занимать до 20%.

Загустители еще называют металлическим мылом. Это связано с его структурой и физическими свойствами. Они имеют хорошо организованную кристаллическую структуру, впитывают масло и удерживают его. Таким образом, на узлах трения и качения создается защитная пленка, а для некоторых модификаций и герметизирующая, и консервирующая база.

Дисперсионная среда или масло, – ключевой элемент пластичной смазки. Исходя из его физико-химических свойств можно дать одну из классификаций техническому составу:

  1. Нефтяные или минеральные;
  2. Высококипящие с температурой до 300-600 градусов;
  3. Синтетические на основе углеводородного сырья;
  4. Кремнийорганические или симбиозные;
  5. На основе сложных эфиров;
  6. На основе галогеноуглеродного сырья;
  7. Фторсилоксановые;
  8. Перфторалкилполиэфиры.

Загустители – не менее важный компонент. Он придает смазке пластичности. Не позволяет растекаться по поверхности трущихся деталей даже при высокой рабочей температуре.

В качестве агрегата могут использоваться:

  • металлические мыла на основе таких элементов как литий, кальций или натрий;
  • комплексные мыла;
  • неорганические загустители, такие как силикагель или бентонитовая глина;
  • синтетические загустители, в основном используется, полимочевина или пертетрафторэтилен.

Добавки – специфический элемент в составе пластиной смазки. Они, как правило, улучшают одно или несколько свойств базового сырья.

В основном их делят на 3 неравные категории:

  1. Присадки. Раскрывают свойства базовых масел, входящих в состав;
  2. Наполнители. Отвечают за герметизирующие и антифрикционные качества;
  3. Модификаторы структуры. Задают необходимую пластичность, для некоторых сред и узлов требуются особые химико-физичекские свойства.

Для добавок используются следующие компоненты: графит, порошки металлов, таких как, цинк, свинец, медь, ряд иных твердых добавок или сложные соединения, например, дисульфид молибдена.

Свойства исходя из базового состава

При отсутствии нагрузки и без повышения температуры пластичные смазки представляют собой очень вязкую среду. Фактически проявляются свойства твердого тела, сохранение формы. Добавив кинетическую и температурную составляющую, мы получаем практически текущую среду, проявляющую свойства жидкости. Для каждой модификации пластичной смазки это температурная и кинетическая граница своя.

В основном пластичные смазки призваны пролонгировать эксплуатационный ресурс пар трения или качения. Снизить износ узлов, зубьев и шестерней в механизмах. Кроме этого, в отдельных случаях пластичные смазки как раз равномерно распределяют нагрузку для более плавного и равномерного износа – это снижает вероятность заклинивания механизма. В отдельных случаях, технический состав защищает деталь от агрессивной среды или препятствует проникновению в отдельные сегменты системы влаги, пара или иного инородного проявления.

Стоит отметить, что есть ряд вечных пластичных смазок. То есть составов, не меняющих физико-химических свойств на всем протяжении эксплуатации. Они закладываются в механизм единовременно и навсегда. Есть и долго играющие вариации, с периодом замены 7-10 лет. Но в основном пластичные смазки требуют периодического обновления. У каждой вариации свой уникальный интервал, зависящий от множества факторов.

Еще одна особенность пластичных смазок – это антикоррозионные свойства. Более 90% модификаций продукта обладают этой особенностью. Кроме этого, существуют специальные антикоррозионные и герметизирующие смазки. Ими покрывают деталь или узел, требующий длительной транспортировки или хранения.

Отдельные вариации герметизирующих смазок великолепно пропускают электрический импульс или обладают хорошим коэффициентом вязкости в условиях полного вакуума.

Перспективное направление в сегменте изготовления пластичных смазок – это основа в виде натурального растительного масла. Такие компоненты абсолютно безопасны для окружающей среды и многие производители активно двигаются в этом векторе.

Где и когда использовать ту или иную пластичную смазку? – подскажет температура ее плавления и граница разложения ее дисперсной составляющей (масла). Классификация пластичных смазок в России зависит от консистенции, состава и области применения. Частичные характеристики и таблица сравнения будет приведена чуть ниже.

Пластичные смазки – характеристики

По консистенции пластичные смазки можно разделить на три большие подгруппы: полужидкие, пластичные и твердые.

Деление пластичных смазок по консистенции

полужидкие

гель

упаковываются в специальные тубы

пластичные

вязкий крем

упаковываются в тубы или короба

твердые

жевачкообразная масса

упаковываются в жестяную банку или ведро

По составу, как мы уже частично упомянули в первом разделе, ПС делят на 4 подкатегории: мыльные, углеводородные, органические и неорганические.

Классификация пластичных смазок по составу

Название

Основа для загустителя

1.

мыльные

соли высших карбоновых кислот

2.

органические

термостабильные органические компоненты

3.

неоргнические

Высокодисперсные термостабильные соединения

4.

углеводородные

тугоплавкие углеводороды, такие как парафин или синтетический воск

Купить пластичную смазку проще всего ориентируясь на ГОСТ 23258-78. Он дает классификацию по направлениям использования. Такая градация удобна как производителям агрегатов, так и непосредственно оператору (пользователю).

Классификация пластичных смазок по вектору использования

Название

Вектор использования

1.

Канатные

Используются на поверхности и у сердечника. Снижают интенсивность коррозии. Уменьшают силу трения между отдельными стальными проволочками каната.

2.

Уплотнительные

Уменьшают зазоры в шестернях и зубьях пар трения и качения.

3.

Антифрикционные

Самая распространенная категория. Используется для снижения трения и износа двух или более частей взаимодействующих деталей.

4.

Консервационные

Создают защитный слой и снижают на 95% коррозионные процессы на поверхности металлических деталей.

Одна из проблем применения пластичных смазок – это совместимость различных составов. Очень важно, что взаимодействующие компоненты не конфликтовали между собой, ведь даже хорошо вычищенный узел может содержать от 20 до 40% старой смазки.

Решить данный вопрос с минимальными затратами поможет синяя пластичная смазка от СУПРОТЕК. Ее свойства, а главное, физико-химические характеристики мы разберем ниже.

Пластичная смазка для подшипников – какую выбрать?

Новые составы от компании Супротек – это модифицированные пластичные смазки, позволяющие продлить эксплуатационный срок автомобильных подшипников и ШРУСов в 1,5-2 раза. Триботехнический состав применяется также, как и любая другая пластичная смазка. Стоит отметить, что удаление старой заводской смазки не требуется, так как компоненты полностью совместимы.

Уникальность составов – это вхождение мелкодисперсного активного минерала. Под воздействием температуры и кинетической силы он восстанавливает геометрию и создает защитный металлический слой на поверхностях пар трения и качения. Независимые тесты составом СУПРОТЕК проводились на легковых, грузовых автомобилях, а также квадроциклах. Везде была показана максимальная эффективность. А толщина образованного металлического слоя в некоторых местах достигали 0,15 мм.

Стоит отметить, что составы полностью готовы к употреблению и не требуют специальных условий для применения. Рабочий температурный диапазон от -40 до +140 градусов Цельсия. Пластичные смазки СУПРОТЕК – это демократичные цены и возможность сэкономить на дорогостоящем ремонте авто. Новая линейка заметно выделяется на полках, имея отличительный символ S синего цвета и 2 шестерни на упаковке. Продлите эксплуатационный ресурс вашего авто или специального транспортного средства вместе с пластичными смазками от компании СУПРОТЕК!

ассортимент и применение – Основные средства

А. Скобельцин

Пластичные смазки – самостоятельный вид материалов, обеспечивающих надежность и долговечность техники (ранее их называли консистентными). Их мировое производство составляет около миллиона тонн в год, что значительно меньше выпуска смазочных масел (около 40 млн. т/год).

Итак, пластичная смазка – это структурированная высокодисперсная система, которая состоит, как правило, из базового масла и загустителя. При обычных температурах и малых нагрузках она проявляет свойства твердого тела, т. е. сохраняет первоначальную форму, а под нагрузкой начинает деформироваться и течь подобно жидкости. После снятия нагрузки пластичная смазка вновь застывает. Основное ее назначение – уменьшить износ поверхностей трения и продлить тем самым срок службы деталей машин и механизмов. В отдельных случаях смазки не столько уменьшают износ, сколько упорядочивают его, предотвращают трение и заклинивание смежных поверхностей, препятствуют проникновению агрессивных жидкостей, абразивных частиц, газов и паров. Смазки, которые практически не изменяют своих показателей качества весь период работы в узле трения, относятся к «вечным» (т. е. закладываются одноразово на весь период работы техники) или долго работающим (с большим периодом замены).

Почти все смазки обладают антикоррозийными свойствами. Для защиты металлических поверхностей от коррозии при транспортировке и длительном хранении разработаны консервационные смазки. Для герметизации зазоров в механизмах и оборудовании, а также соединений трубопроводов и запорной арматуры созданы уплотнительные смазки с лучшими герметизирующими свойствами, чем у масел.

Некоторые смазки специального назначения увеличивают коэффициент трения, изолируют или, наоборот, проводят ток, обеспечивают работу узлов трения в условиях радиации, глубокого вакуума и т. п. По составу это сложные коллоидные системы, состоящие из жидкой основы, которая называется дисперсионной средой, и твердого загустителя – дисперсной фазы, а также наполнителей и присадок. В качестве дисперсионной среды используют различные масла и жидкости. Около 97% пластичных смазок готовят из нефтяных продуктов. Применяются и синтетические масла для смазок, работающих в специфичных и экстремальных условиях: сложные эфиры, фторуглероды и фторхлоруглероды, полиалкиленгликоли, полифениловые эфиры, кремнийорганические жидкости. Изза высокой стоимости такие масла растространены не очень широко.

В отдельных случаях используют растительные масла. Работы в этом направлении весьма перспективны, поскольку материалы на основе компонентов биосферного происхождения значительно безопаснее для окружающей среды, чем минеральные аналоги.

Классификация смазок по вязкости
Класс Диапазон пенетрации, м·10–4,
перемешанной смазки (60 двойных ударов) при 25 °С
Визуальная оценка консистенции смазки
000 445…475 Очень мягкая, аналогичная вязкому маслу
00 400…430 То же
0 355…385 Мягкая
1 310…340 »
2 265…395 Вазелинообразная
3 220…250 Почти твердая
4 175…205 Твердая
5 130…160 Очень твердая, мылообразная
6 85…115 То же

Область применения смазки во многом определяется температурой плавления и разложения дисперсной фазы, а также ее концентрацией и растворимостью в масле. От природы загустителя зависят антифрикционные и защитные свойства, водостойкость, коллоидная, механическая и антиокислительная стабильность смазки. Для придания этих свойств в состав вводят соли высших карбоновых кислот, высокодисперсные органические и неорганические вещества, тугоплавкие углеводороды.

В связи с ужесточением режимов эксплуатации узлов трения в большую часть современных пластичных смазок вводят добавки – присадки и наполнители. Используют присадки следующих типов: противоизносные, противозадирные, антифрикционные, защитные, вязкостные и адгезионные. Многие из них – многофункциональные, т.е. улучшают несколько свойств одновременно.

В качестве наполнителей используются высокодисперсные, нерастворимые в маслах вещества, улучшающие эксплуатационные характеристики смазки, но не образующие в ней коллоидной структуры. Чаще применяют наполнители с низким коэффициентом трения: графит, дисульфид молибдена, сульфиды некоторых металлов, полимеры, комплексные соединения металлов и др. Оксиды цинка, титана и одновалентной меди, алюминия, олова, бронзы и латуни широко используют в резьбовых, уплотнительных и антифрикционных смазках для тяжелонагруженных узлов трения скольжения. Обычно эти наполнители добавляют в объеме от 1 до 30% количества смазки.

За рубежом широко используется две классификации, разработанные Национальным институтом по пластичным смазкам (NLGI). Классификация по вязкости группирует все смазки на 9 классов по диапазону пенетрации. Величину пенетрации определяют методом погружения стандартного металлического конуса в пластичную смазку в течение определенного времени. Чем глубже погрузится конус, тем меньше класс NLGI, мягче смазка и, соответственно, тем легче она будет выдавливаться из зоны трения. Смазки с высоким номером NLGI, напротив, будут создавать дополнительное сопротивление и плохо возвращаться в зону трения. Другая, достаточно широко признанная классификация группирует пластичные смазки в 5 классов, основываясь на областях применения на автомобилях.

В России используется несколько систем классификации – по консистенции, по составу и областям применения. По консистенции смазки разделяют на полужидкие, пластичные и твердые. Пластичные и полужидкие представляют собой коллоидные системы, состоящие из дисперсионной среды, дисперсной фазы, присадок и добавок. Твердые смазки до отвердения остаются суспензиями, состоящими из смолы или другого связующего и растворителя. В них в качестве загустителя используют дисульфид молибдена, графит, технический углерод и т. п. После отверждения (испарения растворителя) твердые смазки превращаются в золи с низким коэффициентом сухого трения.

Классификация смазок по применению
Применение Класс по NLGI Обслуживание
Шасси LA Мягкие условия, частая замена
LB Редкая замена, высокие нагрузки, контакт с водой
Подшипники колес GA Мягкие условия
GB Средние условия, типичные для большинства автомобилей
GC Жесткие условия, высокие температуры, эксплуатация в режиме частых пусков и остановок

По составу смазки разделяют на четыре группы.

1. Мыльные. В качестве загустителя используются соли высших карбоновых кислот (мыла). Наиболее распространены кальциевые, литиевые, бариевые, алюминиевые и натриевые смазки. Мыльные смазки в зависимости от жирового сырья называют условно синтетическими, на основе синтетических жирных кислот, или жировыми – на основе природных жирных кислот, например синтетические или жировые солидолы.

2. Неорганические. В качестве загустителя использованы термостабильные высокодисперсные неорганические вещества. Это силикагелевые, бентонитовые, графитные смазки и др.

3. Органические. Для их получения используют термостабильные, высокодисперсные органические вещества. Это полимерные, пигментные, полимочевинные, сажевые смазки и др.

4. Углеводородные. В качестве загустителей используют тугокоплавкие углеводороды: петролатум, церезин, парафин, различные природный и синтетический воск.

По области применения ГОСТ 23258–78 разделяет смазки на антифрикционные, консервационные, уплотнительные и канатные. Такая классификация более удобна для разработчиков техники. Антифрикционные смазки уменьшают износ и трение сопряженных деталей. Консервационные смазки снижают коррозионное разрушение металлоизделий. Уплотнительные смазки герметизируют зазоры и неплотности узлов и деталей. Канатные смазки наряду со снижением коррозионного разрушения стальных канатов также снижают износ отдельных проволок при их трении друг о друга.

Немаловажная проблема – совместимость смазок разного состава. При замене смазочного материала в узле трения не всегда полностью удаляется предыдущая закладка. Так, в шарнирах рулевого управления автомобилей после четырехкратного шприцевания остается до 40% «старой» смазки. При смешении «старой» и «новой» смазок ухудшаются эксплуатационные характеристики смеси по сравнению с исходным продуктом. Эта смесь вытекает из узла трения либо чрезмерно уплотняется, снижая надежность узла. Следовательно, при выборе новой смазкизаменителя потребителю полезно знать, можно ли смешивать смазки разных марок. Основным фактором, определяющим совместимость смазок, является природа загустителя. Жидкая основа, присадки и добавки существенного влияния на совместимость не оказывают. Со смазками всех марок совместимы консервационные материалы, загущенные тугоплавкими углеводородами (парафином, церезином). Совместимы почти все продукты, загущенные стеаратом натрия и оксистеаратом лития. Плохо совместимы смазки с силикагелем, стеаратом лития и полимочевиной.

Совместимость пластичных смазок с различным загустителем
Загуститель Стеарат кальция Комплекс кальциевого мыла Стеарат лития Оксистеарат лития Стеарат натрия Силика­гель Полимоче­вина Церезин, парафин
Стеарат кальция С Н Н С С Н Н С
Комплекс кальциевого мыла Н С Н С С С С С
Стеарат лития Н Н С С Н Н Н С
Оксистеарат лития С С С С С С Н С
Стеарат натрия С С Н С С С С
Силикагель Н С Н С С С С
Полимочевина Н С Н Н С С
Церезин, парафин С С С С С С С С

Условные обозначения: С – совместимы; Н – несовместимы; «–» – нет данных.

Сейчас в России вырабатывается примерно 150 наименований пластичных материалов в количестве 45…50 тыс. т/год. По структуре производства мыльных смазок Россия значительно отстает от Западной Европы и США, где основными являются литиевые смазки – в США 60% общего объема и в Западной Европе 70%. В России их доля невелика – 23,4%, или около 10 тыс. т/год.

Современные смазки на 12-гидроксистеарате лития, например типа Литол24, хорошо работают в широком диапазоне температур – от –40 до +120 °С, имеют хорошие эксплуатационные свойства, заменяют многие устаревшие продукты, такие как консталин, 113, солидолы и др. Это перспективные и конкурентоспособные материалы.

Более перспективны смазки, приготовленные на комплексном литиевом мыле. Они работают в более широком диапазоне температур (от –50 до +160…200 °С), нагрузок и скоростей. Комплексная литиевая смазка ЛКСметаллургическая в ряде случаев заменяет ИП1, 113, ВНИИНП242, Литол24. Комплексные литиевые смазки также применяются в оборудовании текстильной, станкостроительной, автомобильной и других отраслей промышленности, в подшипниках ступиц колес автомобилей.

Основу отечественного ассортимента – 44,4% – составляют устаревшие гидратированные кальциевые смазки (солидолы), доля которых в развитых странах, например в США, не превышает 4%. Производство натриевых и натриевокальциевых смазок в России составляет 31% общего объема, или до 12,5 тыс. т/год. Эти материалы имеют хорошие характеристики и применяются при температурах от –30 до +100 °С. Доля прочих мыльных смазок в России невелика – 0,3%, или 89 т/год. Это продукты на алюминиевых, цинковых, смешанных мылах (литиевокальциевых, литиевоцинковых, литиевоцинковосвинцовые, бариевосвинцовые и др.), а также получаемые путем смешения готовой смазки с металлическим порошком.

Доля немыльных смазок, приготовленных на неорганических загустителях (аэросилы, силикагели, сажа, бентонит), в России всего 0,2%, или менее 10 т/год. Главным образом это узкоспециализированные термостойкие (до 200…250 °С) и химически стойкие смазки. В США доля этих материалов – 6,7%. Немыльные смазки готовят на органических загустителях – полиуреатах, пигментах. Полиуреатные продукты нового поколения, приготовленные на нефтяных и синтетических углеводородных маслах, работают при температурах до 220 °С и по этому показателю близки к термостойким тефлоновым смазкам на основе перфторполиэфиров, выгодно отличаясь от последних значительно меньшей ценой. В США доля производства этих материалов составляет 6% и непрерывно увеличивается. В России полиуретановые смазки не выпускают.

Объемы производства отечественных углеводородных материалов составляют 3 тыс. т/год. В основном это консервационные и канатные смазки. Полужидкие смазки типа Трансол200, Редукторная вырабатывают в России в объеме всего около 20 т/год.

Структура производства пластичных смазок в России
Тип смазки 1992 г. 2000 г.
% тыс. т % тыс. т
    Литиевые 17,23 16,8 21,75 9,83
    Литиевые комплексные 0,16 0,16 0,09 0,04
    Натриевые и натриево-кальциевые 2,28 2,22 28,83 13,03
    Кальциевые гидратированные 62,67 61,1 41,42 18,72
    Кальциевые комплексные 0,42 0,41 0,93 0,42
    Прочие мыльные 1,36 1,33 0,29 0,1316
Неорганические 0,08 0,08 0,02 0,008
Органические 0,0004
Углеводородные 6,46 6,3 6,64 3,0
Полужидкие 9,23 9 0,04 0,02

Анализ отечественного ассортимента смазок позволяет сделать следующие выводы. В России сохраняется неблагоприятная структура ассортимента: большая доля низкокачественных гидратированных кальциевых смазок и незначительная доля высокоэффективных литиевых. Комплексные литиевые смазки выпускают в малых количествах. Большинство пластичных материалов массового применения морально устарело еще 20…30 лет назад, ассортимент практически не обновляется.

Экономический рост, особенно в автомобильной, металлургической, нефтегазодобывающей отраслях промышленности, стимулирует рост потребления пластичных материалов, в том числе высококачественных автомобильных смазок, смазок для металлургического оборудования, работающего при максимальной температуре до 150 °С, а также арматурных и резьбовых.

Что такое смазка? - О трибологии

Tribology Wikipedia > Что такое смазка?

Содержание

Смазка

Смазка представляет собой полутвердую жидкость, состоящую из жидкой смазки, смешанной с загустителем. Масло смазывает, а загуститель удерживает масло и обеспечивает сопротивление потоку. В качестве загустителей в смазке используются мыла (металлический элемент, такой как литий, кальций, натрий или алюминий, прореагировавший с жирной кислотой) или мелкие частицы смазочной добавки, такой как политетрафторэтилен (ПТФЭ) или свинец [1]. Консистенция смазки такова, что ее можно резать ножом, а также она может течь под небольшим давлением. Подобно масляным смазкам, присадки добавляются в смазку для улучшения несущей способности, стойкости к окислению и защиты от коррозии [2].

Смазка имеет сложную реологию, поэтому является специальной смазкой. Он имеет многофазную формулу, в которой присутствуют как жидкости, так и твердые вещества. Кроме того, реологические свойства смазки зависят как от скорости сдвига, так и от продолжительности сдвига. Смазку можно определить, исходя из ее реологических характеристик, как «смазку, которая под действием малых нагрузок при обычных температурах проявляет свойства твердого тела, а при приложении нагрузки и при критической величине начинает деформироваться и вести себя как жидкость наоборот» [3].

Свойства консистентной смазки

Консистентная смазка состоит из 65-95% базового масла, 3-30% загустителя и 0-10% присадок. Все эти составляющие придают смазке полутвердую структуру. Взаимодействие между маслом и системой загустителя определяет текучесть или реологию смазки [4].

Вязкость: Течение консистентной смазки сильно нелинейно из-за уменьшения вязкости с увеличением скорости сдвига, называемого разжижением при сдвиге. Как правило, вязкость достигает максимального плато при низких скоростях сдвига и минимального плато при высоких скоростях сдвига.

Напряжение сдвига: При очень низких напряжениях поведение жидкости в смазках не наблюдается в течение разумного времени. В этих условиях волокнистые контакты могут ограничивать поток смазки за счет механического препятствия. Говорят, что пластичные смазки проявляют явное поведение текучести, т. е. они испытывают необратимое течение только после приложения минимального напряжения или деформации, называемого «пределом текучести» [5]. Предел текучести важен по ряду практических причин, так как, например, он предотвращает утечку смазки и определяет ее уплотняющую способность в подшипнике.

Рис. 1 Схема реологического поведения базового масла (ньютоновское) и пластичной смазки (разжижение при сдвиге с пределом текучести) [4]

Течение смазки выше предела текучести неньютоновское, т. е. зависимость между напряжением сдвига и скоростью сдвига нелинейна. В этом отношении консистентные смазки классифицируются как разжижающиеся при сдвиге материалы: их вязкость снижается (часто на несколько порядков1) при увеличении скорости сдвига или напряжения. Поэтому в случае смазки правильнее использовать термин «кажущаяся сдвиговая вязкость», а не вязкость, чтобы просто выразить соотношение между напряжением сдвига τ и скоростью сдвига γ̇. С увеличением скорости сдвига, в конце концов, в смазках также достигается ньютоновское значение вязкости. Обычно она отличается от вязкости базового масла и в первую очередь зависит от вязкости базового масла, а также от типа и количества загустителя. Различия в реологическом поведении смазки и ее базового масла показаны на рис. 1, где тангенс (δ) — это вязкость базового масла, а тангенс (ε) — «кажущаяся ньютоновская вязкость» смазки, которая равна достигается только при достаточно высоких скоростях сдвига [6].

Механизм образования масляной пленки

Рис. 2. Механизм образования масляной пленки согласно Cann et al. [8]

Согласно Cann et al. [8], структура смазки начинает распадаться на более мелкие комки перепутанных волокон, разделенных базовым маслом, на сравнительно большом расстоянии от контакта Герца. Происходит прогрессивный сдвиг этих частиц по мере их приближения к области входа, пока они не уменьшатся до более мелких отдельных частиц, которые частично отбрасываются в стороны контакта. Было высказано предположение, что вклад загустителя в формирование пленки полностью зависит от того, как загуститель влияет на устойчивость смазки к сдвигу. Чем более устойчива смазка к сдвигу, тем выше способность волокон загустителя выдерживать скорости сдвига и напряжения во входной зоне, и, таким образом, тем больше увеличивается толщина пленки. Таким образом, более толстая пленка, наблюдаемая при смазке, загущенной кальцием, по сравнению с пленкой, полученной при использовании смазки, загущенной литием, объясняется более высокой устойчивостью к сдвигу. Однако мы отмечаем, что устойчивость к сдвигу также является функцией скорости сдвига.

Рис. 3 Механизм образования масляной пленки по Вильямсону [14]

Эти же смазки были испытаны Williamson [14] на средних скоростях. В отличие от того, что было обнаружено Канном и др. [8]. на малых оборотах литиевая смазка давала более толстую пленку, чем кальциевая. Кроме того, это исследование показало, что тип загустителя влияет не только на степень, в которой он способствует увеличению эффективной вязкости базового масла, но и на то, как он влияет на реологию смазки в контактном входе. Действительно, в условиях испытаний, использованных в этом исследовании, было обнаружено, что поведение смазок было либо ньютоновским (в литиевых и кальциевых смазках), либо истончением при сдвиге (в смазках на основе полимочевины). Следовательно, как ранее указывалось в литературе [15], эти результаты привели авторов к выводу, что не вся смазка в контактном входе разлагается. Вместо этого часть его может образовывать «ядро» объемной смазки, которое остается нетронутым. Соответственно, целые смазочные структуры будут сохраняться и вовлекаться в контакт. Таким образом, механизм образования пленки, предложенный на рисунке 2, был немного изменен в соответствии с рисунком 3. Было высказано предположение, что толщина этого сердечника связана с пределом текучести смазки, контролирующим сопротивление смазки пластической деформации.

Функция смазки
  1. Основная функция смазки — оставаться на поверхности, обеспечивая смазку этой поверхности без утечки под действием силы тяжести.
  2. Смазка не должна терять своих свойств сдвига при изменении температуры.
  3. Смазка должна проходить через подшипник через смазочный шприц, однако она не должна добавляться в качестве дополнительного агента, потребляющего больше энергии.

Функциональные свойства консистентной смазки
  1. Действует как герметик и предотвращает утечку.
  2. Имеет больше преимуществ по сравнению с маслом.
  3. Действует как твердая смазка.
  4. Уровни жидкости нельзя контролировать или измерять.

Стандартные тесты ASTM для характеристик смазки включают
  1. Кажущаяся вязкость
  2. Кровотечение, миграция, синергетика
  3. Консистенция, проникающая способность и национальная смазка
  4. Номера института (NLGI) Стойкость к коррозии и ржавчине
  5. Температура каплепадения
  6. Фреттинг-износ и ложное бринеллирование
  7. Устойчивость к окислению
  8. Прокачиваемость и прогибаемость
  9. Устойчивость к сдвигу
  10. Влияние высоких и низких температур

Преимущества консистентной смазки
  1. Лучшая эффективность при остановке и пуске: когда система отключается, масло вытекает, а смазка остается в компоненте.
  2. Загрязнение – риск загрязнения таких продуктов, как пищевые и фармацевтические продукты, снижается при использовании смазки из-за ее сопротивления проникновению в продукты.
  3. Смазки уменьшают капание, разбрызгивание и утечки.
  4. Смазки снижают уровень шума.
  5. Машины, работающие со смазкой, потребляют меньше энергии

Недостатки консистентной смазки
  1. Пониженная передача тепла/охлаждения – поток масла отводит тепло от места его образования, откуда оно может быть удалено или рассеяно. Смазка имеет тенденцию удерживать тепло на месте.
  2. Худшая способность к хранению – слишком длительное хранение может привести к разделению базового масла и загустителя, а также к изменению свойств.
  3. Консистентная смазка может попасть не во все места, требующие смазки.
  4. Смазки нельзя использовать на высоких скоростях, для которых хорошо подходят жидкости

Ссылки

  1. [1] Baart, P. , 2011. Механизмы консистентной смазки в уплотнениях подшипников (докторская диссертация, Технический университет Лулео).

  2. [2] Cann, P.M.E., 1996. Понимание консистентной смазки. В серии «Трибология» (том 31, стр. 573–581). Эльзевир.

  3. [3] Юсиф А.Е., 1982. Реологические свойства консистентных смазок. Износ, 82(1), стр. 13–25.

  4. [4] Де Лаурентис, Н., 2016. Экспериментальное исследование влияния состава смазки на трение в контактах EHL.

  5. [5] Balan, C., & Franco, J.M., 2001. Влияние геометрии на переходный и установившийся поток консистентных смазок. Трибологические операции, 44(1), 53–58.

  6. [6] Гегнер, Дж. (ред.), 2013 г. Трибология: основы и достижения. Совет директоров – книги по запросу.

  7. [7] Darrak, I., Vergne, P., Mazuyer, D., Truong-Dinh, N., & Girodin, D., 2003. Природа и свойства смазочной фазы в консистентной смазке.

  8. [8] Cann, P.M., Williamson, B. P., Coy, R.C., & Spikes, H.A., 1992. Поведение смазок в эластогидродинамических контактах. Journal of Physics D: Applied Physics, 25(1A), A124.

  9. [9] Briscoe, HM, 1990. Почему космическая трибология? Международная трибология, 23(2), 67–74.

  10. [10] Альборн, Г. Х., Хинрикс, Дж. Т., и Перрин, Б. Дж., 1975, апрель. Системы смазки с длительным сроком службы. В Европейском симпозиуме по космической трибологии, Frascati.

  11. [11] Hilton, M.R., & Fleischauer, P.D., 1992. Применение пленок твердой смазки в космических кораблях. Технология поверхностей и покрытий, 54, 435–441.

  12. [12] Вест С.Е., 1993. Смазка механизмов космических аппаратов. JHATD, 14(1), 68–75.

  13. [13] Кэмпбелл-младший, Вашингтон, Марриотт, Р.С., и Парк, Дж.Дж., 19 лет84. Данные дегазации для выбора материалов космического корабля.

  14. [14] Darrak, I., Vergne, P., Mazuyer, D., Truong-Dinh, N., & Girodin, D., 2003. Природа и свойства смазочной фазы в консистентной смазке.

  15. [15] Mutuli, S., Bonneau, D., & Frène, J., 1989. Поля скоростей в контактах, смазываемых консистентной смазкой. Наука о смазочных материалах, 2(1), 25–44.

  16. [16] ТАБОР, Д. Современные проблемы трения и смазки. Природа 182, 980–981 (1958). https://doi.org/10.1038/182980a0

Теги: смазка смазка смазка смазка масло Свойства смазки

Манодж Раджанкунте Махадешвара

В настоящее время я работаю аспирантом в Университете Лидса. Ранее я закончила магистратуру по престижной совместной магистерской программе Erasmus Mundus (магистр трибологии). Я также получил степень бакалавра в области машиностроения в ВТУ, Белгаум, Индия. Я работаю менеджером по социальным сетям в Tribnet, а также у меня есть свой канал на YouTube Tribo Geek.