700 грн
Цена без ндс
в корзину
Задать вопрос по этому товару
* Наличие товара и цены окончательно уточняются при оформлении заказа.
Кат.номер:
2101-3003134
21010-3003134-00
МК01-30.03.100
Код для заказа:
11183
Статус:
в наличии
Производитель:
КЕДР
Купить сейчас за один клик
Хотите купить этот товар, но не хотите разбираться с процессом покупки?
Каталожный номер: 2101-3003134
Наконечники рулевые для автомобилей ВАЗ 2101-07, 2120-21214, 2123, 2131, короткие серии Триал, производства ЗАО «Кедр». Комплект 2 шт.
Технические особенности и преимущества рулевых наконечников ВАЗ 2101-2107, 2120-21214, 2123, 2131 ТМ "КЕДР" серии ТРИАЛ
Все детали и комплектующие рулевых наконечников изготавливаются непосредственно на ЗАО «Кедр», что позволяет обеспечить 100% контроль качества на каждом этапе производства. Неслучайно компания является поставщиком рулевых наконечников на конвейер ООО «АвтоВАЗ».
Технические преимущества рулевых наконечников ВАЗ 2101-2107, 2120-21214, 2123, 2131
1. Пальцы рулевых наконечников изготавливаются методом поперечно-клиновой прокатки, что дает увеличение циклической долговечности.
2. На всех пальцах шаровых опор резьба изготавливается методом поверхностно-пластической деформации, не нарушая внутреннюю структуру металла, что позволяет увеличить прочностные характеристики резьбы до 15% по сравнению с нарезанной.
3. Изделия проходят 100% ультразвуковой контроль.
4. Рулевые наконечники имеют антикоррозийное катафорезное покрытие с улучшенными адгезионными свойствами.
5. В процессе сборки рулевых наконечников используется рекомендованная «АвтоВАЗом» смазка ШРБ-4.
6. Защитные чехлы серии «ТРИАЛ» из специальной авиационной резины, обладающей высокой стойкостью к озону, маслу, бензину и температурным колебаниям.
7. Пальцы рулевых наконечников серии «ТРИАЛ-СПОРТ» покрыты составом «Нильбор-20» белого цвета, обладающим антикоррозийными и антифрикционными свойствами.
Товарная группа | Тяги и наконечники |
---|---|
Производитель | КЕДР |
Страна | --- |
Возможен самовывоз товара: Наконечник рулевой ВАЗ 2101 наружный (МК01-30.03.100) 2 шт., КЕДР в день заказа по адресу размещеня магазина «M8AUTO» Украина, Харьковская обл. г. Дергачи ул. Сумской шлях 163 д.
Рулевое управление Наконечник рулевой ВАЗ 2101 наружный (МК01-30.03.100) 2 шт., КЕДР подходят на следующие автомобили:
Постепенно вытеснив шкворневую систему, шаровые опоры стали сегодня безальтернативным элементом конструкции подвески любого автомобиля. Попробуем разобраться в специфике этой простой и одновременно сложной детали.
Назначение шаровых опор — обеспечение подвижности управляемых колес автомобиля в горизонтальной плоскости при полном сохранении их вертикального положения. Проще говоря — это «сустав», позволяющий колесам поворачиваться при рулении. Принципиальная конструкция детали достаточно проста и состоит из двух основных элементов: металлического «пальца» с шарообразным оконечником и корпуса с соответствующей сферической полостью.
Устанавливаются шаровые опоры как промежуточные звенья между поворотным кулаком и рычагами подвески. В многорычажных подвесках ставят по две шаровых опоры на каждый поворотный кулак — на верхней и нижней точке сочленения, а на системах со стойкой «Макферсон» используют всего одну опору на нижней точке. Как правило, резьбовая часть пальца шаровой опоры фиксируется в поворотном кулаке, а корпус крепится к рычагу. (Реже применяется обратный вариант, такой как, например, у автомобилей ВАЗ семейства «Самара», где корпус шаровой закрепляется на кулаке, а резьбовая часть пальца шаровой — на нижнем рычаге.)
По способам крепления шаровых опор к рычагам существует четыре разновидности. Прежде всего, это самое распространенное до недавних пор крепление на болтовых соединениях. Среди владельцев подержанных машин это самый любимый и желанный вариант, позволяющий поменять шаровую отдельно. Труднее будет ремонт в том случае, если шаровая опора закреплена на рычаге заклепками. Еще труднее, когда шаровая запрессована в рычаг — тут многие производители вообще не допускают извлечения шарнира, предлагая только замену вместе с рычагом. И как апофеоз неремонтопригодности выступает конструкция, где корпус шаровой интегрирован в рычаг, составляя с ним фактически единое целое и извлечь его невозможно.
Шаровая опора с болтовым креплением (слева) и опоры интегрированные в рычаг.
Стоит заметить, что системы с несьемной шаровой опорой сейчас получают все большее распространение, особенно у японских и корейских машин. Автопроизводители считают их более технологичными, а ремонтопригодность и возможность отдельной замены уже отступает на второй план. И здесь особая ответственность ложится непосредственно на сам узел — шаровую опору.
При всей принципиальной простоте, конструкция шаровой опоры имеет свои особенности и нюансы, которые прямо влияют на ее характеристики. Не случайно, с момента своего появления в конце 40-х годов, этот узел претерпел множество изменений и доработок, став к настоящему времени высокотехнологичной деталью.
Разработка шаровых опор - сложный наукоемкий процесс.
Первые шаровые опоры представляли собой конструкцию с полусферической опорной частью. Вскоре от нее отказались, сделав оконечник пальца в виде шара (отсюда и название) — так с 50-х годов прошлого века появилась уже близкая к современной конструкция шаровой опоры. Это был (за исключением пыльника) полностью металлический узел , в котором уплотнение пальца в корпусе осуществлялось посредством пружинного подпора, а подвижность обеспечивалась за счет смазки, заправляемой через специальный клапан— т.н. «масленку». В плане требований по обслуживанию такая шаровая оказывалась близка к шкворню, также нуждаясь в периодическом смазывании и немногим выигрывая лишь в легкости поворачивания.
Технологии материалов развивались бурно, и от смазывания шаровых опор конструкторы отказались, начав с 60-х годов использовать полимерные «вкладыши» между корпусом и пальцем в сочетании с перманентной смазкой, которая единожды закладывалась при изготовлении детали на заводе на весь срок службы. А еще через двадцать лет из конструкции шаровой исчез пружинный подпор, утратив свою необходимость. Прогресс в сфере промышленного оборудования дал возможность производителям изготавливать пару корпус-палец с высокой точностью, а на смену пластикам «вкладышей» прошлых лет пришли новые материалы — родственники нейлона, способные дольше сохранять свои свойства и заданные характеристики детали.
Шаровые опоры в разрезе: слева — устаревшая полностью металлическая конструкция с пружинным подпором и ниппелем для смазки, справа — современная деталь со вкладкой из инженерного пластика на основе нейлона.
Претерпели изменения и другие элементы конструкции. Так, на смену применявшимся прежде пыльникам с фиксацией проволочным кольцом пришли «интегрированные» пыльники, которые неотделимы от корпуса шарнира. Они обеспечивают гораздо лучшую защиту узла от попадания влаги и пыли, вызывающих коррозию, но в случае их повреждения замене не подлежат — только вместе с шаровой.
Однако, несмотря на все прогрессивные технологии, старые конструкции с пружинным подпором и «масленкой» все еще в ходу — такие шаровые предлагаются на рынке запчастей для ремонта как для отечественных автомобилей, так и для иномарок. При этом одновременно с ними предлагаются и современные необслуживаемые шаровые. Но многие потребители отдают предпочтение «старым и проверенным». Почему?
Необслуживаемые опоры с пластиковыми вкладышами появились еще на советских автомобилях ВАЗ и АЗЛК, но в эпоху дефицита эту (как и остальные) запчасть было не достать. Народ ухитрялся как мог, встраивая в шаровые «масленки» и закачивая в них «солидол». Нечто подобное наблюдается и теперь — наши автомобилисты еще верят в то, что обслуживаемый узел при должном внимании будет служить дольше необслуживаемого. Причем доходит даже до «советских истоков» — в современные шаровые опоры с перманентной смазкой некоторые наши умельцы также встраивают «масленки» и закачивают туда консистентную смазку, искренне считая, что это очень полезно и продлевает срок службы детали.
Между тем смазка, которую закладывают в шаровые на заводе, используется специальная, она совсем другая, нежели купленная в автомагазине и заправленная в гаражных условиях. Пользы от такой самодеятельности, как утверждают инженеры, не будет никакой. Об этом говорили и пытались объяснить автолюбителям еще в советские годы, но, как видно, не совсем успешно.
Немалую роль играет сложившееся у нас (и вполне оправданное) недоверие к пластикам, и убежденность в том, что металл с хорошей и регулярной смазкой будет гораздо надежнее и долговечнее. При этом никого не смущает, например, покрытие «тефлон» на кухонных сковородках, который является «родственником» воска. Также и пластмассы в привычном понимании этого слова в современных шаровых опорах нет. В деталях выпускаемых мировыми производителями используются особые полимеры, специально разработанные с учетом работы этого узла.
Одними из главных физических параметров шаровой опоры являются крутящий момент и величина зазора между корпусом и пальцем. Первый определяет легкость поворачивания элементов узла относительно друг друга, и чем он меньше — тем лучше. Тем меньше сила трения элементов детали, ведущая к ее износу и выходу из строя. (Также меньшее усилие потребуется для поворота рулевого колеса, хотя при наличии гидроусилителей этот показатель нивелируется. Но ГУР не облегчает работу других элементов подвески — в первую очередь рулевых тяг и наконечников, которые получают на себя излишнюю нагрузку.)
Динамика изменения крутящего момента (усилия поворачивания) и зазора (определяет ресурс) между корпусом и пальцем шаровой опоры (испытания NEO CTR). На графиках видно, как с увеличением «пробега» у цельнометаллической опоры быстро уменьшается высокий момент и растет зазор, а у детали со вставкой из инженерного пластика при изначально меньшем моменте зазор остается неизменным.
Работа сил трения ведет к увеличению зазора между пальцем и корпусом, который при достижении критической величины и делает шаровую непригодной для дальнейшего использования — деталь нужно будет менять. Именно увеличившийся зазор создает тот характерный стук в подвеске при движении по неровной дороге, сообщая о том, что нужен ремонт. Последствия езды со стучащими шаровыми могут оказаться непредсказуемы, поскольку в случае разъединения шарнира у подвески отделяется весь ступичный узел колеса с поворотным кулаком и автомобиль ложится на днище.
Как показывают испытания, проведенные компанией NEO CTR, современные шаровые опоры, изготовленные с применением инженерного пластика на основе нейлона, сохраняют установленный зазор между пальцем и корпусом в течение более чем 500 000 циклов «поворачивания». При этом в устаревших металлических шаровых с «масленкой» в тех же условиях зазор увеличивается в четыре раза, достигая критической величины.
Но это еще в идеальных условиях стендовых испытаний, где нет других нагрузок. В реальной же эксплуатации, шаровые опоры подвергаются воздействия множества других разнонаправленных сил: «ударным» нагрузкам при проезде неровностей, «разрывным» при попадании колесом на яму в повороте и их всевозможным комбинациям. Ответственные производители всегда тестируют все свои изделия на «вырывание», «изгибание» и «удар», стремясь добиться наилучших показателей.
Стенд для ресурсных испытаний шаровых опор на производстве NEO CTR. Деталь проходит 500 000 циклов "поворачивания".
Свою роль в ходимости шаровых опор влияет конструкция подвески в целом, которая может быть как очень удачной в плане нагруженности этого узла, так и не вполне. Сильно сказывается манера езды самого владельца и состояние дорог, по которым он передвигается. Например, срок службы современной шаровой опоры с «нейлоновым» седлом и инженерным пластиком для одной и той же модели автомобиля может составлять как 30 000 км пробега, так и более 80 000 км.
У первых автомобилей свечи зажигания были разборными: в них можно (а порой и нужно) было отделить и заменить изолятор, почистить или поменять электроды. Надо было регулярно смазывать ступичные подшипники. Но вскоре свеча стала изготавливаться как цельный элемент и о разборных конструкциях тут уже никто не помнит и не мечтает. Ступичные подшипники ходят со вложенной на заводе смазкой и не требуют ухода.