logo1

logoT

 

Элементы поршня


Поршни конструктивные элементы - Энциклопедия по машиностроению XXL

На рис. 260 показан поршень двигателя. Основными конструктивными элементами поршня являются днище, головка с 3—4 кольцевыми канавками для поршневых колец (нижняя часть поршня называется часто юбкой) и внутри две бобышки с отверстием для поршневого пальца. Юбки поршней бывают сплошные и вырезанные. В средней части юбки, расширяющейся при нагреве во время работы двигателя, во многих конструкциях предусматривают прорези шириной 2—3 мм, которые прорезают к оси его параллельно, перпендикулярно и наклонно. Юбке часто придают овальное сечение.  [c.439]
Общие сведения о поршнях и обработке. Изготовляемые на АЛ поршни автомобильных и тракторных двигателей по форме и размерам различаются существенно. Однако во всех поршнях общими конструктивными элементами являются днище, головка с тремя—пятью канавками под поршневые кольца, юбка и отверстие под поршневой палец, расположенное в бобышках внутренней полости юбки. Наличие в поршнях общих элементов позволяет в основном создать типовой технологический процесс с использованием при обработке вспомогательных баз, подготовляемых вначале.   [c.124]

В качестве существенного недостатка имеющихся данных многочисленных исследований по износам машин следует указать также на отсутствие систематических исследований по динамике износа последовательно сменяемых недолговечных конструктивных элементов стареющих машин (обычно изучается износ нового комплекта колец, поршней, гильз цилиндров двигателей до их смены, а износ повторно поставленных в двигатель гильз, поршней и колец не изучается то же и с коленчатым валом, вкладышами, шестернями, валами и подшипниками коробок передач и т. п.).  [c.40]

Для упрощения рассматриваются только конструктивные элементы, имеющие один признак нарушения их годности и одну периодичность ее возобновления (например, коленчатый вал — по признаку овальности шеек, гильза цилиндра — по признаку необходимости ее обработки под ремонтный размер поршней, лемех плуга — по признаку затупления носка и т. п.) фактически некоторые сложные конструктивные элементы машин (например, корпусные детали) имеют несколько признаков нарушения их годности и разные периоды ее возобновления.  [c.121]

Ремонтопригодность конструктивного элемента машины, предусмотренная конструктором (например, блоки цилиндров или гильзы цилиндров двигателя, для которых предусмотрена расточка под ремонтные размеры поршней коленчатые валы, для которых предусмотрена шлифовка под ремонтные размеры вкладышей клапаны и головки цилиндров двигателей, ремонт сопряжения которых предусматривает многократную шлифовку фасок и фрезерование гнезд тормозные барабаны автомобилей, протачиваемые или шлифуемые на новый размер при износе поверхностей под тормозные колодки, и т. п.), всегда должна учитываться при контроле изменений годности машины и ее конструктивных элементов, а также при соответствующих техникоэкономических расчетах.   [c.122]

Характерными примерами сменяемых ремонтопригодных конструктивных элементов являются лемехи плугов, ремонтируемые оттяжкой и наваркой лапы культиваторов, ремонтируемые оттяжкой и заточкой вкладыши подшипников двигателей некоторых типов, ремонтируемые путем нанесения ячеистой поверхности (опрессовкой или накаткой) и заливкой тонким слоем баббита пальцы поршней, ремонтируемые раздачей и шлифовкой, и т. п.  [c.195]


Гидравлические связи. Основой гидравлических связей явились пять базирующихся на использовании сервомоторов с дроссельными золотниками типовых конструктивных элементов [2, 7, 8, 25], нашедших широкое применение в системах регулирования всех заводов гидравлический выключатель отсечного золотника, позволяющий выполнить безрычажными схемы с отсечными золотниками гидравлические сумматоры, позволяющие вводить в САР любое количество управляющих сигналов посредством установки управляющих дросселей на параллельных линиях слива или подвода рабочей жидкости, причем каждый из дросселей перемещается своим регулятором гидравлические пружины, обеспечивающие строго центральное приложение усилия к поршням системы сопло — заслонка (следящие золотники) с подвижными и неподвижными соплами, обеспечивающие бесконтактную передачу управляющего сигнала от одного элемента к другому и открывшие благодаря этому возможность применения современных высокочувствительных регуляторов и электрогидравлических преобразователей с малой перестановочной силой золотники двойного дросселирования, обеспечивающие минимальный расход рабочей жидкости и наилучшие динамические свойства гидравлической части САР.  [c.156]

На рис. 282 приведены виды поршней различных двигателей и их конструктивные элементы.  [c.462]

Наиболее распространен первый тип. Конструкции этих компрессоров многообразны [1—3, 15—18], однако аммиак контактирует в них с однотипными конструктивными элементами картером, цилиндрами, ложными крышками, поршнями, клапанами, поршневыми кольцами, сальниковыми уплотнениями.   [c.295]

Основные конструктивные элементы поршня. Из требований, вытекаю- щих из условий эксплуатации различных автомобильных двигателей, следует, что для изготовления поршней наиболее целесообразно применять  [c.61]

Уплотнения кольцевых зазоров в сопряжениях поршней с цилиндрами, штоков с отверстиями, а также уплотнения золотниковых пар являются наиболее ответственными конструктивными элементами.  [c.211]

Конструктивные элементы в виде круглых и кольцевых пластин постоянной толщины или ступенчатого профиля находят широкое распространение в различных отраслях машиностроения и строительного дела. Для увеличения жесткости и прочности такие пластины усиливаются концентрическими выдавками и тонкими ребрами [5], [8]. Примерами таких пластин, расчетная схема которых имеет вид, показанный на фиг. 1 или 3, могут служить некоторые днища резервуаров, фланцы труб, крышки цилиндров, диафрагмы, поршни, железобетонные, плиты и др.  [c.57]

КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ ПОРШНЯ  [c.225]

Применение поршня со стальной головкой и масляным охлаждением, жидкостных силиконовых демпферов крутильных колебаний, стальных хромированных поршневых колец и других конструктивных элементов создает условия для достижения дизелями Д49 высоких pg при сохранении длительного моторесурса и высокой надежности в эксплуатации.  [c.297]

Учитывая, что регулирование времени подъема и спуска поршня толкателя требуется не во всех случаях использования толкателей, ВНИИПТМАШ разработал, кроме толкателей типа Т с регулировочным устройством (фиг. 284), ряд толкателей типа ТБ без этих устройств, значительно более простых конструктивно и более дешевых в изготовлении (фиг. 285). Основные элементы регулируемых и нерегулируемых толкателей унифицированы. В толкателях без регулирования отсутствуют элементы регулировочного устройства и установлен более простой корпус центробежного насоса.  [c.469]

Обычно разрушительное действие оказывает кавитация на насосы, в которых она наступает тогда, когда жидкость при ходе всасывания отрывается по тем или иным причинам от рабочего элемента насоса (поршня, лопасти, зубьев шестерен или прочих вытеснителей). Возможность такого отрыва зависит от величины давления жидкости на входе в насос и ее вязкости, от числа оборотов насоса, а также от конструктивных его особенностей. Например, такое явление будет наблюдаться, если давление на входе во всасывающую камеру насоса окажется недостаточным для того, чтобы обеспечить неразрывность потока жидкости в процессе изменения скорости ее движения в соответствии с изменением скорости движения (ускорением) всасывающего элемента. Предельно допустимым с этой точки зрения числом оборотов насоса является такое число, при котором абсолют-  [c.46]


В радиально-поршневых насосах вытеснителями также являются поршни или плунжеры, но расположенные радиально. На рис. 12.8 представлена конструктивная схема радиально-поршневого насоса однократного действия. Основным элементом насоса является ротор 4 с плунжерами 5, который вращается относительно корпуса б насоса. Ротор 4 установлен в корпусе 6 со смещением оси (с эксцентриситетом ё). Полости всасывания и нагнетания располагаются в центре насоса и разделены перемычкой 2.  [c.163]

Агрегат этого типа может быть достаточно эффективным при эксплуатации скважин с небольшими газовыми факторами и высокими динамическими уровнями, позволяющими обеспечивать большое погружение агрегата, и с небольшим содержанием механических примесей и воды в добываемой жидкости. Схема агрегата позволяет найти сравнительно простые конструктивные решения, отличающиеся прочностью элементов. Нагрузки при ходе его вверх и вниз могут быть уравновешены, а скорости уравнены посредством соответствующего подбора сечений поршня и штока двигателя и верхнего неподвижного штока 3.   [c.278]

Конструктивная форма детали. Прочность и износостойкость деталей автомобильных и тракторных двигателей сильно зависит от их конструктивной формы. Усилительные ребра (например, на днище поршня), пояса (например, на цилиндровых гильзах), приливы и выступы (например, на крышках подшипников) значительно увеличивают прочность и жесткость детали. При проведении прочностных расчетов для упрощения расчетных формул усиливающие элементы детали обычно во внимание не принимаются, влияние же их на прочность и жесткость учитывается выбором больших допускаемых напряжений.  [c.48]

Основные особенности конструктивной схемы, разработанной во ВНИИЭСО, заключаются в следующем колебательная система поставлена на жесткое основание корпуса машины, который может быть вытянут в виде консоли. Осевое усилие сжатия передается упорным стержнем, расположенным над сварочным наконечником стержня. Массивный отражатель упорного стержня одновременно выполняет роль поршня привода давления (см. рис. 21, д). Такое расположение колебательной системы стало возможным только после проведения исследовательских работ по созданию эффективного упорного элемента в виде длинного и тонкого стержня (гл. III).  [c.127]

Основные конструктивные соотношения размеров элементов поршня (рис. 96) приведены в табл. 50. Величину верхней части поршня А1 выбирают, исходя из обеспечения одинакового давления опорной поверхности поршня по высоте цилиндра и прочности бобышек, ослабленных отверстиями для пропуска масла. Это условие обеспечивается при  [c.205]

Пневмогидравлический привод может иметь различные конструктивные оформления, в частности он может быть выполнен и в одном общем блоке, как показано на рис. 125,6, где 1 — поршень пневмоцилиндра 2 — шток поршня пневмоцилиндра и одновременно плунжер гидроцилиндра 3 — поршень гидроцилиндра, передающий рабочее давление зажимным элементам приспособления.  [c.186]

Появление новых расчетных и экспериментальных методов не исключает необходимости в испытаниях натурных образцов поршней. Даже при использовании ЭВМ и такого эффективного метода как конечные элементы, нельзя еще вести расчеты поршня, как пространственной конструкции с учетом пластичности и релаксационных свойств металла. По многим материалам, применяемым для поршней, имеются не все физико-механические и прочностные характеристики в диапазоне рабочих-температур, а также отсутствуют коэффициенты концентрации напряжений для конструктивных форм и металлов поршней. В связи с этим фирмы, заводы и научно-исследовательские организации, занимающиеся разработкой поршней и проведением работ no повышению их надежности, создают специальные стенды и установки для ускоренных испытаний натурных образцов.  [c.204]

Детали уплотнения выполняются в виде манжет, разжимных мягких колец или металлических упругих колец. Манжеты изготовляются из кожи, маслоупорной резины или хлорвинила. Примеры конструктивного оформления уплотняющих элементов на поршнях приведены на фиг. 120. Используя в конструкциях манжетные уплотнения, следует учитывать, что работа их основана на прижатии отбортованной части манжеты к зеркалу цилиндра давлением воздуха или жидкости, находящейся в цилиндре. Поэтому на поршнях одностороннего действия отбортованная часть манжеты должна быть повернута в сторону рабочей полости (фиг. 121).  [c.107]

В табл. 10 приведены основные конструктивные соотношения элементов поршня.  [c.63]

Основные конструктивные соотношения элементов корпуса поршня  [c.64]

Прессами, домкратами или так называемыми гидравлическими гайками (рис. 176). Такие гайки являются одновременно конструктивным элементом узла. Принцип их действия состоит в том, что после установки охватывающей детали на конус вала и навинчивания обеих гаек / и 2 до упора кольцами-поршнями 3, 4 в торцы напрессовываемой детали в гидрогайку 1 нагнетают насосом масло и этим создают требуемую силу запрессовки. Гайка 2 служит для расирессовки. После сборки обе гайки стопорят.  [c.222]

F 16 конструктивных элементов или деталей машин, например гвозди, болты, пружинные кольца, клинья, шпонки, зажимы, обоймы, муфты, замковые соединения С — Валы, гибкие валы, детали кривошипных механизмов, вращающиеся детали, не являющиеся частями приводных механизмов. подшипники D — Муфты (невыключаемые, выключаемые), тормоза F — Пружины, рессоры, амортизаторы, средства для гашения колебаний G — Приводные ремни, тросы, канаты, цепи, соедитипели для них Н — Передачи J — Поршни, цилин-  [c.38]

Двигатели [внутреннего сгорания [F 02 свободнопоршневые В 71/00-71/06 со сжатием (воздуха В 3/00-3/12 горючей смеси В 1/00-1/14) на твердом топливе В 45/00-45/10 устройства для ручного управления D 11/00-11/10 с устройствами для продувки или заполнения цилиндров В 25/00-25/08) G 01 индикаторных диаграмм 23/32 датчики давления, комбинированные с системой зажигания двигателей 23/32 индикация (относительного расположения поршней и кривошипов 23/30 перебоев в работе 23/22 работы или мощности 23/00-23/32)) измерение расхода жидкого топлива F 9/00-9/02 испытание (М 15/00 деталей М 13/00-13/04)) F 01 рабочего тела К 25/00-25/14) изготовление для них ковкой или штамповкой В 21 К 1/22 использование теплоты отходящих газов (F 02 G 5/00-5/04 холодильных машин F 25 В 27/02) комбинированные с электрическим генератором Н 02 К 7/18 работа в компрессорном режиме F 04 В 41/04 на транспортных средствах В 60 К 5/00-5/12] (гравитационные 3/00-3/08 инерционные механические 7/00, 7/04-7/10) F 03 G для грейферов В 66 С 3/14-3/18 изготовление деталей В 21 D 53/84 многократного расширения в паросиловых установках F 01 К 1102-7104 объемного вытеснения F 01 В (агрегатирование с нагрузкой 23/00-23/12 атмосферные 29/02 комбинированные с другими машинами 21/00-21/04 конструктивные элементы 31/00-31/36 предохранительные устройства 25/16-25/18 преобразуемые 29/04-29/06 пуск 27/00-27/08 расположение и модификация распределительных клапанов 25/10 регулирование 25/00-25/14 сигнальные устройства 25/26) работающие на горючих газах F 02 G 1/00-1/06 рас-пределителыше механизмы F 01 L 1/00-13/08 для пишущих машин В 41 1 29/38 пневматические в избирательных переключателях Н 01 Н 63/30   [c.72]


Шланги, хранение В 65 Н Шликер производство (изделий из пластических материалов В 29 С 41/16 фасонных или трубчатых изделий В 28 В 1/26-1/28, 21/08) литьем из шликера шликерные массы, используемые в порошковой металлургии В 22 F 3/22) Шлифовальные [круги зуборезных станков F 21/02 для за очки зубьев пил D 63/(12-14)) В 24 В (крепление 45/00 правка 53/(00-14))) станки предохранительные устройства 55/00 приспособления для измерения, индикации, управления (49-51)/00) для часового производства G 04 D 3/02)] Шлифование [В 24 В алмазов 9/16 арочных поверхностей 19/26 древесины 9/18, 21/00 зеркал 9/10 игл 19/16, В 21 G 1/12 камней, керамических изделий, кристаллов или глазированных изделий 7/22, 9/06 канавок на валах, в обоймах, в трубах, в стволах орудий 19/(02-06) конструктивные элементы обшие для шлифовальных и полировальных станков 41/00-47/28 по копиру изделий особого профиля 17/(00-10) лезвий коньков 9/04 линз 9/14, 13/(00-04) лопаток турбин 19/14 некруглых деталей 19/(08-12) опорных поверхностей 15/(00-08) поверхностей (оптических 13/(00-06) (вращения плоских) 7/00-7/28, 21/(04-14) седлообразных 15/00 сферических 11/(00-10) трохоидальных 19/09) пластических материалов 7/30, 9/2() поршней, поршневых колец 19/(10,11) пробок 15/06 проволоки 5/38 способы. 1/00-04 стеклоизделий 7/24, 9/08-9/14 устройства [c.214]

Основными конструктивными элементами поршня являются днище 1, головка 2 (верхний пояс) с кольцейыми канавками для поршневых колец, юбка 3 (нижний пояс) и бобышки 4 с отверстием для поршневого пальца.  [c.462]

Высокие максимальное давление цикла и скорость повышения давления (в 2—3 раза больше, чем в обычном дизеле) вполне допустимы в СПГГ, поскольку в нем нет связанных с поршнем силовых конструктивных элементов.  [c.190]

Одновременно с этим существуют проблемы, связанные с возможностью использования метода внутритрубной диагностики на указанных газопроводах. Так, например, некоторые старые трубопроводы имеют конструктивные элементы, которые значительно уменьшают проходное сечение, или имеют другие отклонения геометрических параметров, что делает проблематичным пропуск ин-спекционньгх поршней. Сюда можно отнести применение неравнопроходной запорной арматуры, внутренних подкладных колец на сварных стыках, наличие прямых врезок различных ответвлений,  [c.160]

По характеру протекания рабочего процесса, по общей компоновке и ряду конструктивных элементов дизели типа М750 близки к дизелям типа 1Д12, описание которых приведено выше. Значительно большая мощность получена за счет увеличения диаметра и хода поршня.  [c.292]

Максимально допустимое значение вакуума обычно указывается в заводской кавитационной характеристике насоса. Эта величина зависит от конструктивных особенностей насоса, рода и температуры перекачиваемой жидкости. Для обеспечения нормальных условий работы насоса необходимо, чтобы расчетное значение вакуума было меньше или равно допустимому. (Метод расчета всасывающей линии порш1невого насоса здесь не рассматриваем. Благодаря неустановившемуся движению расчет при поршневом насосе отличается от расчета при центробежном насосе. В поршневом насосе на всасывание, кроме элементов всасывающего трубопровода, оказывают влияние число двойных ходов поршня и инерция всей массы жидкости во всасывающем трубопроводе.)  [c.126]

Если по конструктивным соображениям размещение двух двойных муфт в коробке передач невозможно, вместо муфты 3 (фиг. 164, а) используют обычный дисковый электромагнитный тормоз, корпус которого прикрепляется к внутренней поверхности стенки коробки передач (фиг. 165). В этом случае после отключения муфты 2 включают тормоз 3, останавливающий щпин-дель, а двигатель 1 и входной вал коробки передач продолжают вращаться. На фиг. 166, а представлена конструкция дисковой муфты-тормоза, состоящей из неподвижного корпуса 10, в котором закреплен сердечник магнита 7 с катушкой 9 и фрикционной накладкой 6. На приводном валу механизма 2 укреплена дисковая полумуфта 3 с ка-тущкой электромагнита 1 и накладкой 4. Диск 5 закреплен на шлицах вала 8 и имеет возможность осевого перемещения. При вращении приводного вала 2 и включении катушки магнита 1 диск 5 притягивается к полумуф-те 5 и движение от вала 2 передается на вал 8 механизма. При включении вместо катушки 1 катушки 9 диск 5 притягивается к сердечнику 7 и вследствие трения между диском 5 и накладкой б происходит торможение механизма. На фиг. 166, б показана муфта-тормоз с пневмоуправлением [87]. Она предназначена для штамповочных агрегатов, прессов, ножниц и других машин кузнечно-прессового производства, работающих на единичных ходах. Для уменьщения массы подвижных элементов, останавливаемых при каждом ходе, пневматический цилиндр и поршень муфты тормоза устанавливают на наружной стороне ведущего маховика, они непрерывно вращаются, и их массы не должны останавливаться при каждом промежуточном включении приводного вала 1. Маховик 8 с канавкой для клиноременной передачи смонтирован на том же валу на подшипниках 15 и 17. К маховику 8 крепится пневматический цилиндр 10 с поршнем 11, впускной клапан 12 с неподвижным штуцером 14 и подводящая трубка 13, соединенная с источником сжатого воздуха. Сдвоенный диск 6 со ступицей 2 соединен неподвижно с валом 1. При подаче сжатого воздуха через штуцер  [c.257]

По мере возможности автор стремился сохранить изобралсение механизма в том виде, в каком оно дано в тех литературных источниках, откуда оно взято, внеся изменения только в тех случаях, когда это было необходимо с точки зрения понимания структуры и кинематики механизмов. В связи с этим на схемах таких механизмов часто отсутствуют те конструктивные детали, которые явились бы обязательными для современных конструкций, и оставлены те элементы конструкций, которые были характерны для того периода, когда эти механизмы были предложены (форма поршней и цилиндров, форма литья крестовин и т. д.).  [c.8]

Широким диапазоном регулирования обладают форсунки с переменным сечением. Впервые такая форсунка была сконструирована в б. Бюро прямоточного котло-строения (БПК) Калачевым (рис. 5-23). Форсунка имеет три типоразмера па про-изводительностп до 3 т/ч. По высоте завихривающей камеры расположено три или больше рядов тангенциальных отверстий 6. Внутри камеры ходит поршень 7, который подобно золотнику может перекрывать часть отверстий. Поскольку давление в камере завихривапияотносительно невелико, расход мазута определяется числом открытых отверстий, а скорость завихривания остается почти постоянной. Соответственно мало меняется тонкость распыливапия. Интервал регулирования от 100 до 25%. Форсунки этого типа широко применяются за рубежом и имеют многообразные конструктивные решения. Однако для них является общим следующее поступающий мазут требует тонкой фильтрации, поршень должен быть хорошо пригнан к камере завихривания. Во избежание эрозии оба эти элемента следует изготовлять из твердых сортов стали. При длинных стволах возникают затруднения с фиксацией положения поршня. Появляется дополнительный сальник в месте выхода штока. Регулирующие устройства должны обеспечивать строгую синхронность в перемещении поршней всех форсунок. Несоблюдение этого условия вызывает неравномерности в подаче топлива по отдельным горелкам.  [c.148]


Кавитация жидкости в насосах наступает при условии, когда жидкость при всасывании отрывается по тем или иным причинам от рабочего элемента насоса — поршня, лопасти, зубьев или прочих вытеснителей. Возможность отрыва зависит от вязкости жидкости и величины давления на входе в насос, а также от числа оборотов и конструктивных особенностей насосов. В частности, кавитация возникает, если давление на входе во всасывающую камеру насоса окан ется недостаточным для обеспечения неразрывности потока жидкое в процессе изменения скорости дальнейшего ее движения.  [c.46]

Назначение и требования к конструкции поршневой группы. Поршневая группа автомобнльпого двигателя представляет собой узел, который выполняет функции собственно поршня, являющегося подвижным и уплотняющим элементом рабочей полости цилиндра, и крейцкопфа, являющегося направляющим элементом для обеспечения прямолинейного движения поршня. Вследствие этого поршень автомобильного двигателя должен не только перемещаться в цилиндре в условиях повышенных температур и переменных боковых нагрузок, но также в какой-то мере обеспечивать отвод тепла и регулирование циркуляции смазочного масла. Из перечисленных выше функций вытекают мгюгочисле1П1ые, частично противоречивые требования к коиструк-ции и материалу поршня. Поэтому наиболее рациональное конструктивное решение, которое в окончательной форме обычно устанавливается на основе проведения экспериментов, в каждом конкретном случае может оказаться весьма различным. В табл. 9 показана зависимость между условиями работы и требованиями, предъявляемыми к поршню, а также указаны пути выполнения этих требований.  [c.61]

Описанная конструкция однако имеет некоторые недостатки. К ним относится прежде всего конструктивная сложность из-за наличия лишней, по сравнению с другими типами кранов, системы подачи давления в кольца, а также недостаточно высокая надежность самих надувных колец. Они могут изготовляться из мягкой кислотостойкой стали 1Х18Н10Т, имеющей достаточные упругие свойства. Но даже стальные кольца из-за малой толщины стенки и пульсирующего характера нагрузки не могут обеспечить высокой надежности работы в эксплуатационных условиях, когда возможно, в частности, попадание твердых абразивных частиц, содержащихся в среде. Проблема надежности работы распорного элемента решена в конструкции, описанной в статье [38]. Здесь надувные кольца заменены кольцевыми поршнями 2 (рис. 37), с каждой стороны которых может подаваться давление от блока управления. В закрытом положении прижатие уплотнительных поверхностей обеспечивается также пружинами 1. Перед открыванием крана поршни 2 отжимаются, что позволяет пробке 3 свободно поворачиваться в подшипниках 4 без трения и износа уплотнительных элементов затвора. Герметичность крана обеспечивается резиновыми кольцами круглого сечения 5, укрепленными в пробке. И в этой  [c.35]

Типовые детали— детали, сходке.цо конструктивной форме, одинаковые по назначению и т1)ебования , к ним предъявляемыми, а также дэтали, многие элементы которых могут быть нормаливованы (поршни, гильзы блоков, шатуны, поршневые кольца, поршневые пальцы и др,). В среднем таких деталей до 40% от общего числа деталей мотора.  [c.62]


Поршень - RacePortal.ru

 Детали шатунно-поршневой группы

 

1-Первое компрессионное кольцо

2-Второе компрессионное кольцо

3-Маслосъёмное кольцо

 3.1-Верхнее плоское кольцо

 3.2-Расширитель

 3.3-Нижнее плоское кольцо

4-Поршень

5-Поршневой палец

6-Стопорное кольцо поршневого пальца (2 шт)

7-Шатун

8-Болт крышки шатуна

9-Вкладыши подшипника шатуна

10-Крышка шатуна

11-Гайка крышки шатуна

 Поршень

  Во время работы двигателя на поршень оказываются значительные механические нагрузки, постоянно изменяющиеся как по направлению, так и по величине. Даже во время спокойного, равномерного движения автомобиля по обычной загородной дороге коленчатый вал двигателя вращается со скоростью приблизительно 3000 об/мин, следовательно, в течение одной минуты поршень должен разогнаться до высокой скорости, остановиться и опять разогнаться в противоположном направлении 6000 раз в минуту, или 100 раз в секунду. Если принять, что средний ход поршня современного короткоходного двигателя равен 80 мм, за одну минуту поршень пройдёт 480 метров, то есть средняя скорость движения поршня в цилиндре равна 28,8 км/час. Ещё выше эти нагрузки у высокофорсированных двигателей спортивных автомобилей. Если принять, что скорость вращения двигателя спортивного автомобиля 6000 об/мин (на самом деле может быть значительно выше), в этом случае поршень изменит направление своего движения 200 раз в секунду, линейное расстояние, которое поршень пройдёт за час, будет равно 57,8 км, при этом максимальная скорость движения поршня будет равна 120 км/час. То есть в течение одной секунды, поршню необходимо 200 раз на расстоянии всего 40 мм разогнаться до 120 км/час и на таком же расстоянии снизить скорость с 120 км/час до 0. Двигатели многих спортивных автомобилей имеют максимальную скорость вращения коленчатого вала до 12000 об/мин, а двигатели болидов Формулы 1 раскручиваются до 19000 об/мин.

 Можно представить какие большие инерционные нагрузки действуют на поршень, даже если просто предположить что коленчатый вал двигателя вращается от постороннего источника энергии. Но на поршень также оказывается воздействие усилия сжимаемых газов на такте сжатия и особенно полезное воздействие расширяющихся газов на такте рабочего хода. Максимальное давление в камере сгорания высокофорсированного двигателя достигает 80 – 100 атмосфер, давление в камере сгорания обычного автомобиля 55 – 60 атмосфер. И если принять, что диаметр поршня среднего автомобиля равен 92 мм, в момент максимального давления поршень испытывает усилие от 5,3 до 6,6 тонн. Так что можно сказать, что поршень автомобиля, как и другие детали кривошипно-шатунного механизма, испытывает огромные механические нагрузки. Но беда не приходит одна, кроме значительных механических нагрузок, поршень также подвергается воздействию очень высоких температур.

  Откуда появляется тепло, оказывающее воздействие на поршень? Первый, но не основной, источник этот трение. Во время работы двигателя поршень перемещается с большой скоростью, при этом он постоянно трётся о стенки цилиндров. Геометрия кривошипного механизма такова, что часть силы, прикладываемой к поршню, расходуется на прижатие поршня к стенкам цилиндра. И не смотря на качественную обработку поверхностей, как цилиндра, так и поршня, даже при наличии смазки, возникает достаточно большая сила трения. Как известно из школьного курса физики, при этом выделяется большое количество тепла. Но в основном тепло, воздействующее на поршень, появляется при сгорании топливовоздушной смеси в цилиндре двигателя. Температура сгоревших в цилиндре газов может достигать 2000º - 2500ºС. Под воздействием таких высоких температур разрушаются все конструкционные материалы, из которых изготавливаются детали современных двигателей внутреннего сгорания. Поэтому необходимо отводить тепло от наиболее нагруженных в тепловом режиме деталей двигателя и, разумеется, от поршней. Общее количество тепла, выделенное во время работы двигателя, зависит от количества сгоревшего в цилиндрах двигателя топлива за единицу времени. А этот показатель, в свою очередь зависит от объёма цилиндров и от скорости вращения двигателя. Двигатель превращает в полезную механическую работу только небольшую часть энергии сгоревшего топлива. Некоторая часть тепла выводится из двигателя с горячими отработавшими газами остальноё тепло необходимо рассеять в окружающем пространств.

 Опять вспоминая школьный курс физики можно сказать, что если два тела имеют разную температуру, но тепло от более нагретого тела перемещается к менее нагретому телу, пока температура обоих тел не сравняется. В автомобиле самым холодным телом, способным абсорбировать большое количество тепла, является окружающий воздух, следовательно, необходимо найти способ отвода тепла от нагретых деталей двигателя к окружающему воздуху. Поскольку весь земной шар всё равно не согреешь, можно считать, что окружающая среда способна абсорбировать любое количество тепла. Самая горячая часть поршня это его днище, поскольку оно непосредственно соприкасается с горячими рабочими газами. Далее тепло распространяется от днища поршня в направлении юбки.

  Тепло от поршня отводится тремя способами: Основная часть тепла передаётся поршневыми кольцами и юбкой поршня стенкам цилиндра и далее отводится системой охлаждения двигателя. Часть тепла отводится внутренней полостью поршня и через поршневой палец и шатун, а также маслом, циркулирующим в системе смазки двигателя. Часть тепла отводится от поршня холодной топливовоздушной смесью поступающей в цилиндры двигателя.

1. Отвод тепла чрез поршневые кольца и юбку поршня. Ясно, что подвести охлаждающую жидкость, циркулирующую в системе охлаждения к поршню невозможно, поскольку поршень во время работы двигателя перемещается с большой скоростью. Но система охлаждения двигателя интенсивно охлаждает стенки цилиндров двигателя. Поэтому необходимо сконструировать поршень и поршневые кольца так, чтобы он излишнее тепло чрез поршневые кольца и юбку передавал стенкам цилиндра двигателя. Далее исправная система охлаждения двигателя выведет тепло их двигателя и передаст его окружающему автомобиль воздуху. Если это не сделать, то температура поршня превысит максимально допустимую, после чего начнётся разрушение поршня под воздействием механических нагрузок и даже его оплавление под воздействием высокой температуры. Без необходимого отвода тепла поршень, сделанный из алюминиевого сплава расплавится всего через несколько минут работы двигателя.

Отвод тепла от поршня

 Поступление тепла к поршню от рабочих газов, находящихся в цилиндре двигателя

  • Охлаждение поршня поступающей топливовоздушной смесью
  • Отвод тепла поршневыми кольцами (50% - 70%)
  • Отвод тепла юбкой поршня (20% - 30%)
  • Отвод тепла через внутреннюю полость поршня (5% - 10%)
  • Отвод тепла через поршневой палец и шатун
  • Охлаждающая жидкость рубашки охлаждения

 Из общего количества тепла, отводимого от поршня, приблизительно 50% - 60% отводится поршневыми кольцами, это накладывает очень высокие требования к конструкции и точности изготовления поршневых колец. Некоторая часть тепла отводится во внутренне пространство поршня и рассеивается во внутреннем пространстве картера или через поршневой палец передаётся на шатун и тоже рассеивается во внутреннем пространстве картера двигателя.

  1. Отвод тепла от поршня через поршневые кольца
  2. Отвод тепла поршневыми кольцами
  3. Камера сгорания
  4. Стенка цилиндра
  5. Рубашка охлаждения
  6. Поршень
  7. Первое компрессионное кольцо
  8. Второе компрессионное кольцо
  9. Маслосъёмное кольцо

 Поскольку самой горячей частью поршня является его днище, являющейся одной из стенок камеры сгорания, тепло перемещается от верхней части поршня к нижней. При этом из всего количества тепла, отводимого от поршня, приблизительно 45% отводится первым компрессионным кольцом, по причине того, что это кольцо всего ближе расположено к самой горячей части поршня, 20% отводится вторым компрессионным кольцом и только 5% отводится маслосъёмным кольцом. Тепло, переданное поршневыми кольцами и юбкой поршня стенкам цилиндра, отводится системой охлаждения двигателя. Поэтому исправность системы охлаждения оказывает больное воздействие на тепловой режим поршня. Увеличение температуры охлаждающей жидкости системы охлаждения на 5º - 6ºС, увеличивает температуру поршня на 10ºС. При неисправности системы охлаждения первое что разрушается в двигателе это поршень. У поршня или прогорает днище или поршень заклинивается в цилиндре.

2. Отвод тепла при помощи масла системы смазки двигателя Поскольку многие внутренние детали картера двигателя смазываются распылением масла, масляный туман постоянно присутствует в картере двигателя. Соприкасаясь с горячими частями поршня или стенок цилиндра, масло забирает от них тепло и, осаждаясь в масляный поддон, переносит туда тепло. Обычно в таких системах при помощи масла от поршня отводилось не более 5% - 10% тепла. Но в последнее время в высоконагруженных двигателях, особенно в дизельных, масло системы смазки стало широко использоваться для охлаждения деталей, имеющих наибольшую тепловую нагрузку. Масло для охлаждения поршня может подаваться к поршню двумя способами. Первый способ – через специальный масляный канал, просверленный в стержне шатуна. В этом случае в шатуне имеется специальное отверстие, через которое масло разбрызгивается на внутреннюю стенку днища поршня. Второй способ – в нижней части картера устанавливаются масляные форсунки, которые под давлением распыляют масло во внутренней полости поршня, или впрыскивают его в специальный кольцевой охлаждающий канал, расположенный в головке поршня. Для отбора от поршня большего количества тепла масляный канал имеет волнообразную форму.

 В этом случае при помощи масла может от поршня отводиться от 30 до 50% тепла. В результате при разбрызгивании масла на внутреннюю стенку днища поршня удаётся снизит температуру днища поршня на 15 – 20ºС, а при организованной циркуляции масла в поршне, температуру днища поршня можно снизить на 25 – 35ºС. Масло, охлаждающие поршни и другие детали сильно нагревается. При нагреве масло разжижается и теряет свои смазывающие свойства. По этой причине возникает угроза заклинивания коренных и шатунных подшипников коленчатого вала.

 В таком случае система смазки двигателя имеет специальный охладитель масла, теплообменник которого передаёт тепло от масла жидкости, циркулирующей в системе охлаждения двигателя. Далее это тепло при помощи радиатора системы охлаждения рассеивается в окружающем автомобиль воздухе.

Охлаждение поршня маслом

 Масляная форсунка, установленная в нижней части гильзы цилиндра, разбрызгивает мало из системы смазки двигателя на внутреннюю сторону днища поршня. Масло отбирает тепло от днища поршня и стекает в масляный поддон двигателя, где происходит его охлаждение.

 Поршень с масляным каналом

 На этих рисунках показан поршень современного дизельного двигателя 2.0 TDI мощностью 103 кВт концерна VOLKSWAGEN. Масляная форсунка впрыскивает масло в охлаждающий канал поршня. По охлаждающему каналу масло проходит через головку поршня, охлаждая его, выходит из охлаждающего канала поршня с другой стороны и стекает в масляный поддон двигателя.

3. Охлаждение поршня холодной топливовоздушной смесью. Вообще поршень любого двигателя частично охлаждается топливовоздушной смесью. Причем чем богаче смесь, там больше она может забрать энергии от поршня. Но по причинам топливной экономичности и экологии современные двигатели часто работают на обеднённой смеси. Современные электронные системы управления двигателя для избежания детонационного сгорания на некоторых режимах работы двигателя немного переобогащают смесь, за счёт чего несколько снижается температура поршня.

 Конструкция поршня

  1. Днище поршня
  2. Головка поршня
  3. Юбка поршня
  4. Выемка для противовесов коленчатого вала
  5. Отверстие поршневого пальца
  6. Канавка стопорного кольца
  7. Бобышка поршня
  8. Отверстие для отвода масла из канавки маслосъёмного кольца
  9. Отверстие для отвода масла ниже маслосъёмного кольца
  10. Канавка маслосъёмного кольца
  11. Третья перегородка поршневых колец
  12. Канавка второго компрессионного кольца
  13. Вторая перегородка поршневых колец
  14. Канавка первого компрессионного кольца
  15. Верхняя перегородка (жаровой пояс)
  16. Метки направления установки поршня
  17. Метки группы диаметра поршня

Вид поршня современного форсированного двигателя

  1. Поршеньфорсированного двигателя
  2. Днище поршня
  3. Выемки клапанов
  4. Вытеснитель
  5. Верхняя перегородка (жаровой пояс)
  6. Канавка верхнего компрессионного кольца
  7. Вторая перегородка
  8. Третья перегородка
  9. Канавка маслосъёмного кольца
  10. Отверстие для отвода масла из канавки компрессионного кольца
  11. Юбка поршня с антифрикционным покрытием
  12. Бобышка отверстия поршневого пальца
  13. Отверстие поршневого пальца
  14. Проточка под стопорное кольцо поршневого пальца
  15. Канавка аккумулирования газов

 На первый взгляд в конструкции поршня нет ничего сложного, поршень очень похож просто на перевёрнутый стакан. Но, учитывая, что к поршню предъявляются очень высокие и часто противоречивые требования, поршень является одной из наиболее трудных в конструировании и изготовлении деталей двигателя. В зависимости от конструкции двигателя, формы его камеры сгорания, расположения клапанов днище, и другие части поршня, могут иметь различную форму.

 Некоторые примеры различных типов поршней

Поршень с вытеснителем и выемками клапанов

 

 Поршень двигателя с непосредственным впрыском топлива автомобиля VOLKSWAGEN с системой управления двигателя FSI FSI

Направление потока смеси

 Очень своеобразную форму имеют поршни двигателей автомобиля VOLKSWAGEN с расположением цилиндров VR и W. У этих двигателей днище поршня в одной плоскости не перпендикулярно оси поршня. Но все остальные детали поршня ось поршневого пальца и канавки поршневых колец строго перпендикулярны оси поршня.

 Порщень RV-образного двигателя

 Ранее отмечалось, во время работы двигателя поршень совершает возвратно поступательные движения с большой средней скоростью и с очень высокими знакопеременными ускорениями, следовательно, для уменьшения сил инерции конструктор должен стремиться сделать поршень, как и все остальные детали, совершающие возвратно-поступательное движение, как можно легче. Способов это сделать всего два, это применение материалов и низким удельным весом, и уменьшения общего количества материала, то есть удаление излишнего материала. Но удаление излишнего материала снижает прочность конструкции, чем деталь массивней, тем легче обеспечить её жесткость и теплоёмкость. Крайне не желательно деформация формы поршня под воздействием механических и температурных нагрузок. Во время работы двигателя поршень контактирует с другими деталями, стенками цилиндра, поршневыми кольцами и поршневым пальцем. Для обеспечения эффективной работы двигателя необходимо обеспечит точные зазоры между всеми этими деталями. Но все эти детали изготавливаются из различных материалов и, соответственно, имеют различные коэффициенты температурного расширения.

 Поршень конструируется так, что после прогрева двигателя до нормальной рабочей температуры все зазоры между движущимися деталями были минимальными и соответствовали расчётным. Вообще наружная форма и размеры поршня должны соответствовать форме цилиндра. При изготовлении стремятся придать отверстию цилиндра строгие геометрические формы. Но, например, неправильная затяжка болтов крепления головки блока цилиндров, может сильно исказить первоначальную форму отверстия цилиндра. Поэтому, при ремонте двигателя всегда строго соблюдайте рекомендованные моменты затяжки всех резьбовых соединений.

 Наружная форма поршня конструируется так, чтобы после прогрева двигателя поршень приобрёл форму строго цилиндра, поэтому при изготовлении поршня в его форму умышленно вносятся некоторые искажения, которые устраняются по мере прогрева двигателя. На холодном двигателе зазор между поршнем и стенками цилиндра увеличен. При прогреве двигателя до нормальной рабочей температуры тепловые зазоры между стенками цилиндра и поршнем уменьшаются и начинают соответствовать норме. Вот почему так важно поддерживать необходимую рабочую температуру двигателя.

 Поршень состоит из трёх основных частей:

  1. Днище поршня
  2. Головка поршня
  3. Юбка поршня

 Днище поршня предназначено для восприятия усилия давления газов. Головка поршня обеспечивает герметизацию подвижного соединения поршня и стенок цилиндров за счёт установленных на головку поршня поршневых колец. Для установки поршневых колец в головке поршня делаются специальные канавки. В верхние канавки современных поршней вставляются компрессионные кольца, а нижняя канавка предназначена для установки маслосъёмного кольца. В канавке маслосъёмного кольца делаются сквозные отверстия, через которые излишнее масло отводится во внутреннюю полость поршня.

 Часть поршня, расположенная ниже нижнего кольца называется юбкой поршня. Юбка поршня, иногда её называют тронковая или направляющая часть поршня, предназначена для удержания поршня в правильном направлении и восприятия боковых нагрузок. То есть юбка является направляющим элементом поршня.

 Очень важным параметром поршня является высота головки поршня относительно оси поршневого пальца (4). Иногда различные модификации двигателя имеют различную степень сжатия. В производстве легче всего изменить степень сжатия изменением высоты головки поршня.

 При конструировании двигателя, для уменьшения сил инерции, конструкторы стремятся сделать поршень как можно легче. Но сделать все стенки поршня одинаковой толщины не удастся. Днище поршня, для восприятия больших нагрузок, всегда делается толще, чем стенки юбки. Но и юбка в различных местах имеет различную толщину. В местах бобышек под поршневой палец юбка имеет значительное утолщение, а, учитывая то, что различные части поршня имеют различную температуру, можно предположить, что при нагреве в разных местах поршень расширяется не одинаково. Поскольку во время рабаты двигателя головка поршня имеет более высокую температуру, следовательно, расширяется больше юбки поршня, головка поршня имеет несколько меньший диаметр по сравнению с юбкой поршня.

Поршень - диаметр головки

 Под воздействием тепловых деформаций поршня, сложенных с боковыми усилиями, действующими на поршень в перпендикулярно оси поршневого пальца, цилиндрический поршень может приобрети овальную форму. Для устранения этого явления поршень изначально делается овальным, но в противоположном направлении, по мере прогрева двигателя поршень, под воздействием боковых сил, приобретает круглую форму. Малая ось овала совпадает с направлением оси поршневого вала, а большая ось овала совпадает с направлением действующих на поршень боковых сил.

                                                                                          

 Но кроме овальности наружная поверхность поршня имеет некоторую конусность. Поршни современного двигателя, кроме овальности, по высоте имеют бочкообразную форму. Поэтому, поршень, кажущийся на первый взгляд простым цилиндром, имеет довольно сложную форму.

 Сложная форма поршня

 На этом рисунке даны отклонения диаметра поршня от номинального размера. Зелёная линия показывает отклонения от номинального диаметра на различной высоте поршня со стороны торцов поршневого пальца, а розовая линия показывает отклонение номинального размера со стороны упорных поверхностей поршня. Ширина жёлтой зоны показывает овальность поршня на различной высоте.

 Подбор точной наружной формы поршня очень трудная инженерная задача. В самом начале развития двигателестроения форма поршня подбиралась только опытным способом. Установив опытный поршнь в двигатель, двигатель нагружали различными нагрузками. После проведения необходимых испытаний поршень снимался и в местах, подвергшихся наибольшему износу, удалялась некоторая часть металла, и после этого проводился следующий цикл испытаний. Ели в результате излишне снятого металла поршень разрушался, толщину стенок или форму поршня изменяли и заново производили полный цикл испытаний. В результате продолжительных испытаний добивались наилучшей формы поршня для данного двигателя. По мере накопления опыта точная форма поршня стала определяться расчётным способом. Но даже сейчас, когда специальная компьютерная программа, может прочитать оптимальную форму поршня быстро, с высокой степью точности и с учётом всех, воздействующих на поршень температурных и механических факторов, проводится обязательное испытание поршней под различной нагрузкой. Другим способом терморегулирования поршня, то есть направленное изменение формы поршня под воздействием температуры является вплавление в алюминиевое тело стальных термостабилизирующих пластин. Термостбилизирующие пластины, при полном прогреве поршня, позволяют снизить радиальное расширение поршня приблизительно в два раза по сравнению с поршнем, полностью изготовленным из алюминиевого сплава.

 Термостабилизирующие пластины

 Термостбилизирующие пластины или кольца являются очень эффективным средством управления расширения поршня в необходимом направлении. Правда эти элементы имеют большое ограничение они могут быть вставлены только в литые поршни, но нет возможности установки этих элементов в современные кованные поршни. Как преднамеренные изменения формы поршня, так и вставка в поршень термостабилизирующих стальных пластин предназначены для обеспечения стабильного минимального теплового зазора между поршнем (юбкой поршня) и стеками цилиндра. Обычно тепловой зазор между юбкой поршня и стенками цилиндра автомобильного двигателя лежит в диапазоне 0,0254 – 0,0508 мм.

 Боковые силы, приложенные к поршню

 Во время работы двигателя шатун постоянно, кроме положения поршня в ВМТ и НМТ находится под некоторым углом к оси цилиндра, причем этот угол постоянно изменяется. Поэтому сила, приложенная к поршневому пальцу, раскладывается на две. Одна сила действует в направлении шатуна, а вторая сила действует в направлении перпендикулярном оси цилиндра. Эта сила прижимает поршень к стенке цилиндра. При движении поршня вверх на такте сжатия сжимаемый воздух оказывает сопротивление перемещению поршня. Часть это силы прижимает поршень к правой стенке цилиндра, если смотреть со стороны передней части двигателя. Во время рабочего хода расширяющиеся газы с большой силой давят на поршень. Часть этой силы расходуется на прижатие поршня к левой стенке цилиндра. Не стоит думать, что эти силы незначительны. Боковая сила, прижимающая поршень к стенке цилиндра приблизительно равна 10% - 12% процентов, от силы, действующей в направлении оси цилиндра. Ранее упоминалось, что во время работы двигателя на днище поршня среднего легкового автомобиля действует сила в несколько тонн, следовательно, сила, прижимающая поршень к боковой стенке может быть равна нескольким сотням килограмм. Поскольку сила, действующая на поршень во время рабочего хода в направлении оси цилиндра значительно выше, силы, действующей на поршень во время такта сжатия, поверхность, к которой прижимается поршень, во время такта рабочего хода, называется основной упорной поверхностью.

 Из всего сказанного вытекает, что при прохождении поршнем ВМТ между тактами сжатия и рабочего хода происходит перемещение поршня от вспомогательной упорной поверхности к основной. Поскольку на поршень действуют большие силы, а все процессы в двигателе происходят очень быстро, перемещение поршня происходи в форме удара. Для уменьшения силы удара при перекладке поршня ось поршневого пальца (вернее ось отверстия в бобышках поршня под поршневой палец) смещена в сторону основной упорной поверхности.

 Перекладывание поршня

 При движении поршня вверх на такте сжатия, давление сжимаемого воздуха оказываемого на днище поршня преобразуется в силу, направленную перпендикулярно днищу поршня. Поскольку шатун находится под некоторым углом к оси поршня, возникает нормальная сила, прижимающая поршень к вспомогательной упорной поверхности (2). Сила, возникающая в результате воздействия давления, равна произведению давления, умноженного на площадь, на которую действует давление. Поскольку ось поршневого пальца смещена в сторону основной упорной поверхности (1), площадь правой половины поршня стала несколько больше площади левой половины. В результате чего сила, действующая на правую половину поршня, будет больше силы, действующей на левую половину поршня. Поэтому, когда поршень остановится в ВМТ, в результате разности этих сил, нижняя часть поршня переместится к основной упорной поверхности. А как только давление в камере сгорания начнёт увеличиваться, произойдёт полная перекладка поршня к основной упорной поверхности. Это позволяет произвести перекладку поршня без ударных нагрузок. При движении поршня в низ, при изменении угла шатуна к оси цилиндра и возрастания давления в цилиндре поршень оказывает давление на основную упорную поверхность (1).

 Обычно смещение оси поршневого пальцы относительно оси поршня в автомобильных двигателях лежит в диапазоне 1,0 – 2,5 мм. Учитывая имеющиеся смещения оси поршневого пальца, поршень допускается устанавливать только в одном направлении. Неправильна установка поршня приведёт к появлению ударных звуков во время работы двигателя. Обычно на днище поршня имеется метка, указывающая правильное направление установки поршня. Перед ремонтом двигателя тщательно изучите руководство по ремонту.

 Нормальный тепловой зазор между цилиндром и юбкой поршня лежит в диапазоне 0,0254 – 0,0508 мм. Но для каждого двигателя имеется точное значение этого параметра, которое можно найти в технических нормативах. Уменьшенный зазор приведёт к задирам поршня или поршневых колец и даже заклиниванию поршня в цилиндре.

 Измерение диаметра поршня

 При увеличенном зазоре повышается шумность работы двигателя и износ поршня и поршневых колец.

Измерение диаметра юбки поршня при помощи микрометра.

 

Измерение диаметра поршня Диаметр юбки поршня необходимо проверять в направлении перпендикулярном оси пальца строго на установленной высоте относительно нижнего края юбки. Замерьте диаметр юбки поршня на установленной высоте и запишите результаты измерений.

 Измерение диаметра цилиндра нутромером

 

При помощи нутромера замерьте диаметр цилиндра и запишите результаты измерений. Для определения зазора необходимо из второго полученного результата вычесть результат первого измерения. Измерение зазора при помощи плоского щупа Некоторые производители двигателей предлагают проводить измерение зазора между поршнем и цилиндром при помощи плоского щупа.

Измерение зазора между поршнем и стенками цилиндра

 На этих двух рисунках показаны различные способы измерения зазора при помощи плоского щупа.

Измерение зазора при помощи щупа 

Материалы, из которых изготовлен поршень

 Поскольку к поршням, как к изделию, предъявляются очень высокие требования, такие же высокие требования предъявляются к материалам, из которых изготавливаются поршни. Можно кратко перечислить требования к этим материалам:

  • Для снижения инерционных нагрузок материал должен иметь как можно меньший удельный вес, но при этом быть достаточно прочным.
  • Иметь низкий коэффициент температурного расширения.
  • Не изменять своих физических свойств (прочности) под воздействием высоких температур.
  • Иметь высокую теплопроводность и теплоёмкость.
  • Иметь низкий коэффициент трения в паре с материалом, из которого изготовлены стенки цилиндров.
  • Иметь высокую сопротивляемость износу.
  • Не изменять своих физических свойств под воздействие нагрузок, вызывающих усталостное разрушение материала.
  • Быть не дорогим, общедоступным и легко поддаваться механической и другим видам

 Алюминий значительно легче чугуна, но поскольку он мягче чугуна, приходится увеличивать толщину стенок поршня, по этой причине вес поршневой группы алюминиевого поршня легче подобной группы с чугунным поршнем всего на 30 – 40%. Алюминий обладает высоким температурным коэффициентом расширения, для устранения влияния которого приходится вплавлять в тело поршня стальные термостабилизирующие пластины и увеличивать зазоры между поршнем и другими элементами в холодном состоянии. Алюминий обладает низким коэффициентом трения в паре алюминий – чугун. Что удовлетворяет, по этому показателю, применение алюминиевых поршней в большинстве двигателей имеющих чугунный блок цилиндров или чугунные гильзы, вплавленные или вставленные в алюминиевый блок цилиндров. Но существуют современные прогрессивные двигатели (в основном немецкие – Фольксваген, Ауди и Мерседес) с алюминиевым блоком цилиндров, не имеющих вплавленных чугунных гильз. У этих двигателей поверхность алюминиевых отверстий цилиндров обрабатываются несколькими различными способами. В результате поверхность стенок цилиндров становится очень твёрдой и приобретает возможность сопротивления износу, даже выше чем у чугунных гильз. Но в паре алюминий – алюминий коэффициент трения очень высокий. В этом случае для уменьшения сил трения проводится железнение опорных поверхностей юбки поршня. В процессе железнения на опорную поверхность юбки поршня гальваническим способом наносится тонкий слой стали.

 Блок цилиндров без гильз

 Поршень с железнением юбки

 На этих рисунках показано плазменное напыление на рабочую поверхность цилиндров полностью алюминиевого блока цилиндров без применения вставных или вплавленных гильз цилиндров и соответствующий этой поверхности поршень с железнением опорной поверхности юбки поршня. Отсутствие чугунных гильз значительно уменьшает вес блока цилиндров.

 Поршень с антифрикционным покрытием

 Кроме антифрикционного покрытия на этом рисунке отчётливо видна стальная вставка, в которой проточена канавка для установки верхнего компрессионного кольца. Установка подобной вставки значительно увеличивает срок службы поршня.

Алюминиевые сплавы

 Кремнеалюминиевые сплавы, из которых изготавливаются поршни большинства современных автомобильных двигателей, делятся на две группы – эвтектические (содержания кремния 11 – 13%) и заэвтектические (содержания кремния 25 – 26%). Для улучшения термической стойкости и механических свойств в эти сплавы добавляются никель, медь и другие металлы. В эвтектических сплавах свободный кремний отсутствует, поскольку он полностью растворён в алюминии, в заэвтектических сплавах кремний может присутствовать в виде кристаллов, часто видимых на срезе или расколе материала. Поршни массовых автомобилей изготавливаются методом литья в кокиль из эвтектических сплавов, поскольку эти сплавы обладают хорошими литейными свойствами. Поршни дизельных двигателей тяжёлых грузовых автомобилей и других нагруженных двигателей изготавливаются из заэвтектических сплавов. Эти сплавы обладают большей прочностью, но имеют большую стоимость в производстве, поскольку изделия из этих сплавов трудней обрабатываются.

Литые и кованые

 На высоконагруженных форсированных автомобильных двигателях применяются поршни, изготовленные не методом литья, а методом ковки (горячей штамповки). Ковка значительно улучшает структуру материала, поэтому кованые поршни обладают большей прочностью и большей устойчивостью к износу. Но вкованные поршни невозможно установить терморегулирующие стальные пластины.

Структура металла кованного поршня

 Литые поршни не применяются, если обороты двигателя в рабочем режиме превышают 5000 об/мин. Кроме того, кованые поршни имеют лучшую теплопроводность, поэтому температура кованых поршней ниже температуры поршней, изготовленных методом литья.

 Сравнение температуры литого и кованного поршня

Ремонтные размеры и селективная подборка

 Как ранее отмечалось, диаметр поршня должен строго соответствовать диаметру цилиндра с обеспечением необходимого зазора между ними. Но в реальном производстве изготовленные детали всегда несколько отличаются друг от друга. Поэтому во многих отраслях машиностроения, и автомобилестроение в том числе, принята селективная подборка. После изготовления измеряются и по результатам измерений детали делятся на несколько классов или групп, с определённым диапазоном измеряемого размера. То есть каждому классу отверстия цилиндра (обычно класс цилиндра выбит в определённом месте на блоке цилиндров), подбирается поршень такого же класса. Например, на ВАЗе поршни подразделяются на пять классов (A, B, C, D и E), но в запасные части для ремонта двигателей поставляются поршни только трёх классов (А, С и Е). Считается, что этого вполне достаточно для выполнения качественного ремонта.

Группы поршня по диаметру

 Таблица и рисунок даны только для примера, поскольку для разных моделей двигателей выпускаются поршни разных номинальных размеров. На рисунке и в таблице упоминаются поршни разного номинального диаметра. Кроме этого выпускаются поршни ремонтного размера, с увеличенным на 0,4 и 0,8 мм диаметром. Не путайте ремонтные размеры, с классами по селективной подборке. Классы селективной подборки отличаются друг от друга на сотые, а, иногда, на тысячные доли миллиметра. А номинальные ремонтные размеры отличаются на несколько десятых долей миллиметра.

 Во время капитального ремонта двигателя с расточкой блока цилиндров под ремонтный размер отверстий цилиндров специалисты ремонтного предприятия точно подгоняют диаметр цилиндра под имеющиеся поршни при хонинговке. Если по причине износа или наличия задиров требуется отремонтировать отверстие одного цилиндра, придётся растачивать все цилиндры. Не допускается применения на одном двигатели поршни разных ремонтных размеров. Диаметр поршня измеряется при помощи микрометра, в направлении, перпендикулярном оси поршневого пальца, на строго установленном расстоянии от низа юбки поршня, указанном в руководстве по ремонту. Все измерения, как диаметра поршня, так и диаметра отверстия цилиндра необходимо проводить при нормальной комнатной температуре – 20º С. Различные производители имеют различные группы или классы поршней по диаметру. Поэтому перед ремонтом двигателя ознакомьтесь с Руководством по ремонту. Кроме селективного подбора поршней по диаметру, поршни также делятся на несколько групп по диаметру отверстия под поршневой палец. Обычно группа поршня определяется цветовой меткой на внутренней поверхности бобышки поршня. Палец поршня имеет соответствующую по цвету метку на торцевой поверхности пальцы.

 Группа поршня по диаметру поршневого пальца

 Каждой группе соответствует установленный диапазон отверстия под поршневой палец, обычно различие между группами не превышает нескольких тысячных миллиметра.

Группа поршня по весу

 Некоторые производители, также делят поршни на несколько групп по весу. Иногда при ремонте двигателя вес поршней уравнивается за счёт снятия металла в установленном месте юбки поршня. Чем меньше различие в весе поршней, тем меньше вибрации двигателя. При замене поршней подбирайте поршни одной весовой группы или, если это указано в Руководстве по ремонту, при помощи удаления металла уравняйте вес поршней.

Данные о размерах поршня и направлении его установки обычно выбиты на днище поршня.

Метки на днище поршня

Маркировка поршня:

  1. Стрелка для ориентирования поршня в цилиндре
  2. Ремонтный размер
  3. Класс поршня по диаметру
  4. Группа отверстия поршневого пальца

И так, поршни одного двигателя делятся по следующим признакам: Класс поршня по диаметру (селективная подборка) Группа отверстия под поршневой палец (селективная подборка) Ремонтный размер Группа по весу поршня

конструкция, отличия и применяемость на двигатели Ваз

Поршень, является наиболее важным элементом любого двигателя внутреннего сгорания.

Именно на эту деталь, выпадает основная нагрузка по преобразованию энергии расширяющихся газов в энергию вращения коленчатого вала. Свойства, которыми должен обладать поршень, трудно совместимы и технически тяжело реализуются.

Требования, которым должна соответствовать эта деталь:

  • температура в камере сгорания может достигать более 2000°С а температура поршня, без риска потери прочности материала, не должна превышать 350°С
  • после сгорания бензино-воздушной смеси, давление в камере сгорания может достигать 80 атмосфер.

 При таком давлении, оказываемое на днище усилие, будет составлять свыше 4-х тонн. Толщина стенок и днища поршня должна обеспечивать возможность выдерживать значительные нагрузки. Но любое увеличение массы изделия приводит к увеличению динамических нагрузок на элементы двигателя, что в свою очередь, ведет к усилению конструкции и росту массы двигателя;

  • зазор между поршнем и поверхностью цилиндра должен обеспечивать эффективную смазку и возможность перемещения с минимальными потерями на трение. Но в тоже время зазор должен учитывать тепловое расширение и исключить возможность заклинивания.
  • изготовление должно быть достаточно дешевым и отвечать условиям массового производства.

Очертания поршня за более сто пятидесятилетнюю историю двигателя внутреннего сгорания мало изменились.

   В конструкции поршня можно выделить несколько зон, каждая из которых, имеет свое функциональное назначение:

1)   Днище поршня – поверхность, обращенная к камере сгорания. Днище, своим профилем, определяет нижнюю поверхность камеры сгорания.

Форма днища зависит от формы камеры сгорания, расположения клапанов, от особенности подачи топливо-воздушной смеси в камеру сгорания и объема самой камеры.

Днища разных моделей применяемых на двигателях ВАЗ приведены на рисунке:

Поршни ВАЗ 21213 и ВАЗ 21230 отличаются нанесенной маркировкой. Маркировка наносится на поверхность рядом с отверстием под поршневой палец. На поршне ВАЗ 21213 нанесены цифры -"213", на модели ВАЗ 2123 - "23".

На модели ВАЗ 21080, ВАЗ 21083, ВАЗ 21100 нанесена соответствующая маркировка - "08","083", "10". Поршень 2108 имеет диаметр 76 мм , модели 21083 и 2110 - 82 мм.

Поршни ВАЗ 2112 и ВАЗ 21124, имеют соответствующую маркировку - "12"и "24" и отличаются глубиной выборки под клапана. Модели 21126 и 11194 отличаются диаметром.

2)   Если углубления на днище увеличивают объем камеры сгорания, то для уменьшения объема применяют вытеснители. Вытеснителем называют объем металла, который находится выше плоскости днища.

3)  «Жаровым поясом» (огневым) называют расстояние от днища до канавки первого поршневого кольца. Чем ближе располагаются поршневые кольца к днищу, тем более высокой тепловой нагрузке они подвергаются, тем больше сокращается их ресурс.

4)  Уплотняющий участок - это участок канавок, расположенных на боковой цилиндрической поверхности поршня. Канавки предназначены для установки поршневых колец. Поршневые кольца обеспечивают подвижное уплотнение. На всех моделях для двигателей ВАЗ, выполнены две канавки под компрессионные кольца и одна канавка под маслосъемное кольцо.

В канавке под маслосъемное кольцо есть отверстия, через которые отводится излишек масла во внутреннюю полость поршня. Уплотняющий участок выполняет еще одну очень важную функцию - через установленные поршневые кольца, осуществляется отвод значительной части тепла от поршня к цилиндру.

Если конструкция изделия не будет предусматривать эффективный отвод тепла от днища, то это приведет к его прогоранию.

По расчетам, через компрессионные кольца, передается до 60-70% выделенного тепла. Однако это требует плотного прилегания поршневых колец к цилиндру и к поверхностям канавок.

Для обеспечения работоспособности, торцевой зазор первого компрессионного кольца в канавке должен составлять 0,045-0,070 мм. Для второго компрессионного кольца зазор - 0,035-0,060 мм, для маслосъемного – 0,025-,0050 мм. Между внутренней поверхностью кольца и канавки должен быть радиальный зазор - 0,2-0,3 мм.

5)  Головку поршня образуют днище и уплотняющая часть.

Расстояние от оси поршневого пальца до днища, называют компрессионной высотой поршня.

6)  «Юбкой», называют нижнюю часть поршня. На этом участке находятся бобышки с отверстиями – место, куда устанавливается поршневой палец. Внешняя поверхность юбки, исполняет роль опорной и направляющей поверхности.

Юбка обеспечивает соосность положения детали к оси цилиндра блока. Кроме того, боковая поверхность юбки участвует в передаче к цилиндру возникающих поперечных усилий.

На поверхность юбки (или на все изделие) могут наноситься защитные покрытия улучающие прирабатываемость и снижающих трение.

Покрытие слоем олова позволяет сгладить неточности профиля и предотвратить наволакивание алюминия на поверхности цилиндра. Могут применяться покрытия созданные на основе графита и дисульфида молибдена.

Другой способ, снижающий потери на трение – нанесение на юбке канавок специального профиля. Глубина канавок составляет 0,01-0,015 мм. При движении, канавки не только удерживают масло, но и создают гидродинамическую силу, которая препятствует контакту со стенками цилиндра.

    Одним из факторов определяющих геометрию поршня, является необходимость снижения сил трения.

   Для этого требуется обеспечение определенной толщины масляного слоя в зазоре между поршнем и стенками цилиндра. Причем маленький зазор повлечет за собой увеличение сил трения и как следствие повышение нагрева деталей и их ускоренный износ а возможно и заклинивание.

Слишком большой зазор, увеличит шумность двигателя, приведет к росту динамических нагрузок на сопрягаемые детали и будет способствовать их ускоренному износу. Поэтому величина зазора подбирается в соответствии с рекомендациями для конкретного типа двигателя.

   В истории применения конструкций поршней для двигателей ВАЗ, просматриваются этапы влияния нескольких европейских конструкторских школ.

На первых моделях двигателей ВАЗ применяется «итальянская» конструкция. Поршни отличаются большой компрессионной высотой, широкой опорной поверхностью юбки. Поверхность изделия покрыта слоем олова.

  В разработке последующих конструкций принимают участие немецкие компании. У поршней уменьшается компрессионная высота. На юбке применяется микропрофиль – специальный профиль канавок, для удержания смазки в зоне трения. Поршни моделей ВАЗ 21126 и ВАЗ 11194 получают Т-образный профиль и рассчитаны на установку «тонких» поршневых колец. Так внешне сравнивая модели от 2101 до 21126, можно получить представление об общих тенденциях совершенствования конструкции , основанных на новых научных разработках.

  В процессе работы, различные участки поршня нагреваются не равномерно, следовательно, и тепловое расширение будет больше там, где выше температура и больше объем металла. В связи с этим, на уровне днища размер выполняют меньшим, чем диаметр в средней части. Таким образом, в продольном сечении профиль будет коническим. Нижняя часть юбки тоже может иметь меньший диаметр. Это позволяет, при движении вниз, в пространстве между юбкой и цилиндром, создавать масляный клин, который улучшает центрирование в цилиндре.

   Для компенсации тепловых деформаций, в поперечном сечении поршень выполнен виде овала. Это связано с тем, что в районе бобышек под поршневой палец сосредоточен значительный объем металла.

При нагреве, в плоскости поршневого пальца, расширение будет осуществляться в большей степени. Овальность и бочкообразность детали в холодном состоянии, позволяет иметь поршень, приближающийся к цилиндрической форме, при работающем двигателе.

Такая форма изделия создает сложности при контроле его диаметра. Фактический диаметр можно определить, только замеряя его в плоскости перпендикулярной оси отверстия под поршневой палец на определенном расстоянии от днища. При этом, для разных моделей это расстояние будет отличаться.

   Тепловые нагрузки порождают еще одну проблему. Поршни изготавливают из алюминиевого кремнесодержащего сплава, а для блока цилиндров используют чугун. У этих материалов разная теплопроводность и разный коэффициент теплового расширения.

   Это приводит к тому, что в начале работы двигателя, поршень нагревается и увеличивается в диаметре быстрее, чем увеличивается внутренний диаметр цилиндра. При и без того малых зазорах, это может приводить к повышенному износу цилиндров, а в худшем случае, к заклиниванию поршня.

  Для решения этой проблемы, во время отливки поршня, в тело заготовки внедряют специальные стальные или чугунные элементы, которые сдерживают резкое изменение диаметра. Для уменьшения теплового расширения и отвода тепла, на некоторых типах двигателя, используются системы подачи масла во внутреннюю полость поршня.

  Поршневой палец обеспечивает шарнирное соединение поршня и верхней головки шатуна. Во время работы двигателя, на поршневой палец воздействуют значительные переменные силы. Палец и отверстия под палец должны сопрягаться с минимальным зазором, обеспечивающим смазку.

  На двигателях ВАЗ используется два типа шарнирного соединения «поршень-палец-шатун». На поршнях моделей 2101, 21011, 2105, 2108, 21083 – палец устанавливается в верхней головке шатуна по плотной посадке, исключающей его вращение. Отверстие в поршне под поршневой палец выполнено с зазором, обеспечивая свободное вращение.

  В дальнейшем от этой схемы отказались и перешли на схему с «плавающим» пальцем. На поршнях моделей 21213, 2110, 2112, 21124, 21126, 11194, 21128 – палец устанавливается с минимальным зазором и в головке шатуна, и в отверстиях поршня. Для исключения осевого смещения пальца, в поршне, в отверстиях под поршневой палец устанавливаются стопорные кольца. Во время работы, у пальца есть возможность проворачиваться, обеспечивая равномерный износ поверхностей.

  Для обеспечения надежной смазки пальцев, в бобышках предусмотрены специальные отверстия.

По результатам фактического замера отверстия под поршневой палец, поршням присваивается одна из трех категорий(1-я, 2-я, 3-я). Разница в размерах для категорий составляет - 0,004мм. Номер категории клеймится на днище.

Для обеспечения необходимого зазора, поршневые пальцы, по наружному диаметру подразделяются на три класса. Отличие в размерах составляет - 0,004 мм. Маркировка класса производится краской по торцу пальца: синий цвет - первый класс, зеленый - второй, красный - третий класс. При сборке, поршню первой категории должен подбираться палец первого класса и т.д.

  Особенностью работы шатунного механизма, является то, что до достижения верхней мертвой точки, поршень прижат к одной стороне цилиндра, а после прохождения ВМТ – к другой стороне цилиндра. При приближении к верхней мертвой точке, на поршень действует максимальная нагрузка, следовательно растет сила давления на палец. Возрастающие силы трения препятствуют повороту поршня на пальце. При таких условиях поворот может происходит скачкообразно, со стуком о стенку цилиндра.

  Для того, чтобы снизить динамические нагрузки и шум, применяют поршни со смещенным отверстием под поршневой палец. Ось отверстия смещена в горизонтальной плоскости от оси поршня. В работающем двигателе это приводит к возникновению момента силы, который облегчает преодоление сил трения.

Такое конструктивное решение позволяет добиться плавности, при смене точек контакта поршня с цилиндром. На такие изделия обязательно наносится метка для правильной ориентации при его установке. Однако, чем больше будет износ цилиндров и юбки, тем в большей степени будет проявляться стук в цилиндре.

  Существуют поршни, в которых применяется не только горизонтальное смещение оси пальца, но и вертикальное. Такое смещение ведет к уменьшению компрессионной высоты. Поршни, с дополнительным смещением оси отверстия под палец вверх, применяются для тюнинговой доработки двигателя. В качестве основной характеристики для таких поршней используется величина смещения, указывающая на сколько смещен центр отверстия под палец, по сравнению со стандартным изделием.

  На рынке продаж, поршень представлен значительным количеством отечественных и иностранных производителей. Независимо от производителя, они должны соответствовать требованиям, рассчитанным для конкретной модели двигателя. Поршни, входящие в комплект, не должны отличаться по массе более чем на ±2,5 грамм. Это позволит снизить вибрации работающего двигателя. Для розничной сети, в комплекты подбираются поршни одной весовой группы. В случае необходимости можно осуществить подгонку поршня по массе.

  Зазор между цилиндром и поверхностью поршня должен соответствовать величине установленной для данной модели двигателя. Поршни номинального размера по своему диаметру относят к одному из пяти классов. Различие между классами составляет 0,01 мм.

  Классы маркируются на днище буквами - (А, В, С, D, Е). В качестве запасных частей поставляются поршни классов - А, С, Е. Этих размеров достаточно, чтобы осуществить подбор деталей для любого блока цилиндров и обеспечить необходимый зазор.

  Поршни ВАЗ 11194 и ВАЗ 21126 имеют только три класса (A, B, C) с размерным шагом - 0,01 мм.

  Кроме номинальных размеров, изготавливаются поршни 2-х ремонтных размеров, с увеличенным наружным диаметром на 0,4 и 0,8 мм. Для распознавания, на днищах ремонтных изделий ставится маркировка: символ "треугольник" соответствует первому ремонтному размеру(с увеличением наружного диаметра на 0,4 мм), символ "квадрат" - увеличение диаметра на 0,8 мм. До 1986 г. ремонтные размеры отличались от современных. Так для двигателя 2101 существовало три ремонтных размера: на 0,2 мм., 0,4 мм., 0,6 мм; для двигателя 21011 два размера: 0,4 мм. и 0,7 мм.

Применяемость моделей поршней на различных двигателях Ваз:

  В качестве материала для изготовления поршней применяются сплавы алюминия. Использование кремния в составе сплава, позволило снизить коэффициент теплового расширения и увеличить износостойкость. Сплавы, где содержание кремния может достигать 13%, называют – эвтектическими. Сплавы с более высоким содержанием кремния относят к заэвтектическим сплавам. Повышение процента содержания кремния улучшает теплопроводные характеристики, однако приводит к тому, что при охлаждении в сплаве происходит выделение кремния в виде зерен размером 0.5-1.0 мм. Это приводит к ухудшению литейных и механических свойств. Для улучшения физико-механических свойств, в сплавы вводят легирующие добавки меди, марганца, никеля, хрома.

  Существует два основных способа получения заготовки поршня.

Отливка в кокиль – специальную форму, является более распространенным способом. Другой способ - горячая штамповка (ковка). После этапов механической обработки, изделие подвергают термической обработке для повышения твердости, прочности и износостойкости, а также для снятия остаточных напряжений в металле.

  Структура кованого металла позволяет повысить прочностные характеристики изделия. Но есть существенные недостатки кованых изделий классической конструкции( с высокой юбкой)– они получаются более тяжелыми. Кроме того, в кованных деталях, невозможно использовать термокомпенсирующие кольца или пластины. Увеличенный объем металла ведет к увеличенной тепловой деформации и необходимости увеличивать зазор между поршнем и цилиндром. И как следствие – повышенный шум, износ цилиндров, расход масла. Применение кованых поршней оправдано в тех случаях, когда большую часть времени двигатель автомобиля эксплуатируется на предельных режимах.

  В современном конструировании поршней, наблюдаются следующие тенденции: уменьшение веса, использования «тонких» поршневых колец, уменьшение компрессионной высоты, использование коротких поршневых пальцев, применение защитных покрытий. Все это, нашло свое применение, в конструкции Т-образных поршней. Наименование конструкции обусловлено схожестью профиля детали с буквой «Т». На этих изделиях, юбка уменьшена и по высоте и по площади направляющей части. В качестве материала для изготовления таких поршней используется заэвтектический сплав, с большим содержанием кремния. Поршни Т-образной конструкции практически всегда изготавливаются горячей штамповкой.

  Принятие разработчиками решения о применении той или иной конструкции поршня всегда предшествует расчет и глубокий анализ поведения всех узлов шатунно-поршневой группы. Детали современных двигателей рассчитаны на пределе возможностей конструкции и материалов. В таких расчетах предпочтение отдается конструкциям с минимальной стоимостью обеспечивающих утвержденный ресурс и не более. Поэтому любое отклонение от штатных режимов работы двигателя ведет к сокращению ресурса тех или иных деталей и узлов.

Поршневые кольца: виды, особенности деталей, рекомендации по выбору и замене

Нормальная работа поршневого мотора невозможна без элементов, которые отвечают за смазку цилиндров. Они также обеспечивают герметичность камеры сгорания. Этими деталями выступают поршневые кольца. Что это за элементы системы, и какие их конструктивные особенности? Ответы на эти вопросы вы найдёте в статье. Надеемся, что прочтение публикации поможет вам корректно подобрать поршневые кольца на трактор и при необходимости заменить их.


Краткое описание

Поршневые кольца – важные функциональные элементы ЦПГ любых двигателей внутреннего сгорания (ДВС). Основой для их изготовления выступают металлические сплавы. Без этих разъёмных колец:

  • увеличился бы расход моторного масла;
  • камера сгорания утратила бы герметичность;
  • увеличился бы объём отработанных газов.

Для слаженного оптимального функционирования ДВС после процесса сжатия необходимо, чтобы в камере повысилось давление. Другими словами – важна компрессия. Оптимальные показатели этого параметра для дизельного оборудования составляет 22–32, а для бензинового – 9–12 атмосфер. Достичь нормальной компрессии невозможно, если камера сгорания утратила герметичность. Соответственно, чтобы ДВС эффективно работал, нужны поршневые кольца. Они обеспечивают герметичность только при правильном подборе. Их размер должен строго соответствовать диаметру цилиндра. В таком случае они удерживают газы, не давая им перейти в картер из камеры сгорания. При правильном подборе также снижается сила трения, а вместе с ней – и потери деталей ЦПГ.

Третья функция, с которой справляются поршневые кольца, – компенсация расширения из-за высокой температуры материалов ЦПГ, которые изготовлены из разных сплавов. При использовании этих деталей исключено заклинивание поршней. Они предупреждают коррекцию компрессии при изменении температурного режима и снимают с поверхностей цилиндра излишки масла, которое наслаивается во время работы двигателя. Однако в последнем случае остаётся тонкая жирная плёнка. Она крайне необходима для нормального функционирования двигателя. Жирная плёнка уменьшает силу трения. Кольца также охлаждают поверхность поршня посредством выведения тепла. Их полезность и необходимость бесспорны. Без них часто невозможна слаженная работа как ЦПГ, так и всего оборудования. В случае их порчи снижается мощность главного движка, агрегаты быстро выходят из строя. Неисправные старые кольца нужно менять, но только на аналогичные качественные детали.


Конструктивные особенности, типы и принципы работы

Существуют маслосъёмные и компрессионные поршневые кольца. Первые называют нижними, вторые – верхними. Они отличаются друг от друга конструктивным строением и применением. Основная функция колец компрессионного типа – обеспечение герметизации в камере. Устанавливают от 1 до 3 таких деталей.

Компрессионный элемент агрегата выступает кольцом разъёмного типа, выполненным из металла, с разрезом, напоминающим замок. В некоторых моделях просматривается выемка для стопора. В замках есть отверстия в несколько микрометров. Именно они выполняют компенсаторную функцию при дестабилизации температур. Основой для изготовления колец, как правило, выступает либо чугун, либо сталь.

Профили компрессионных деталей могут иметь бочкообразную (напоминает дугу) или плоскую форму (с сечением в виде неправильного 4-угольника либо прямоугольника). Существуют также модели с фаской небольшой высоты. В продаже можно найти и «минутные» элементы. С их наружной стороны есть наклон. Его угол равен нескольким десяткам минут дуги, поэтому кольца получили такое название.

Компрессионные детали с плоским профилем целесообразно подбирать для оборудования, в котором создаются экстремальные условия функционирования. Им не страшна работа при завышенных параметрах давления и температурного режима, недостатке смазки. Поверхность этих профилей подвергают специальной обработке:

  • хромом;
  • фосфатами;
  • оловом и т. д.

Эта обработка делает поверхность износостойкой и долговечной. Кольцо, в свою очередь, качественно отводит тепло от поршня, выполняет функцию уплотнения, прилегая к зеркалу цилиндра.

Маслосъёмные или нижние элементы зачастую выпускают со сложным профилем. Они способствуют появлению равномерной масляной плёнки оптимальной толщины, которая защищает цилиндр, и одновременно исключают попадание жирных веществ в камеру сгорания. На одном поршне используют только 1 описанную деталь. В двухтактных системах их нецелесообразно применять, так как масло доливают в бензин. Классические нижние кольца состоят из разъёма и расширителей.

Существуют 2 типа маслосъёмных деталей: цельные и составные. Первые кольца имеют П-образные профили с направленностью по отношению к поршню. У их основания есть либо овальные, либо круглые отверстия. Через них происходит выведение излишков масла. Составные поршневые аналоги представляют собой конструкцию, состоящую из нескольких колец с серединкой в виде распорного элемента. Последний бывает 3 видов:

  1. Тангенциальным – устройство, которое одновременно справляется с задачей разжима колец и их присоединения к цилиндру, то есть выполняет функции двух представленных ниже аналогов.
  2. Осевым – элемент, совместимый исключительно с составными деталями, выполняет функцию их разъединения.
  3. Радиальным – конструкция, прижимающая кольцо к цилиндру.

По факту разъёмные части имеют вид пружин. Они бывают плоскими либо витыми. Максимально допустимое количество пружин в 1 нижнем кольце – 2 единицы. Их размещают над основными частями разъёмных устройств или под ними. Именно благодаря пружинам нижнее кольцо осуществляет оптимальный съём масла в поверхности цилиндра. Излишки жирного вещества поступают сначала в канавку, а затем – в картер двигателя.

Рекомендации по выбору и замене

Почему поршневые кольца изнашиваются? Это объяснимо их функциональным предназначением. Во время эксплуатации наблюдается значительное механическое и температурное воздействие на них. Негативное влияние способствует потере первоначальных свойств и порче. Однако они приходят в негодность постепенно, соответственно, теряя былые возможности.

Если своевременно не осуществить замену, то:

  • в камеру сгорания попадёт масло;
  • снизится компрессия;
  • в картере появятся газы.

Порой агрегат начинает хуже работать по причине закоксовки колец. Это происходит потому, что детали начинают заклинивать из-за наслоения нагара в канавках поршня. Закоксовка влечёт за собой:

  • увеличение расхода масла и топлива;
  • потерю приёмистости и мощности;
  • появления серого либо чёрного выхлопа.

Если появились описанные негативные изменения в работе оборудования, необходимо осуществить комплексную оценку агрегата. То есть осмотреть двигатель и свечи, проанализировать компрессию.

Незамедлительно менять поршневые кольца нужно при:

  • значительном снижении компрессии;
  • загрязнённости свечей;
  • ухудшении работы двигателя.

Как подобрать новые поршневые кольца? Посмотреть на модель двигателя и купить детали нужного каталожного номера. Если проводился капитальный ремонт, понадобится запаска ремонтного размера. Она должна идеально подходить к новым поршням.

Заменой колец должен заниматься специалист либо человеком, который поймёт и будет строго следовать общепринятой инструкции. Начинают работу с разборки двигателя, далее извлекают поршни. После этого можно удалять кольца и очищать канавки. Качественно выполнив описанные работы, устанавливают новые кольца, учитывая метки производителя. При этом проверяют зазоры, чтобы они соответствовали установленным пределам. Замки не должны находиться на одной линии. В противном случае образуется зазор, через который газы будут поступать в камеру сгорания.

Если осуществляется установка поршня с новыми кольцами, применяют специальную оправу. Она обеспечивает плотное прилегание деталей. В любом случае специалисты рекомендуют проводить обкатку двигателя. Во время этого процесса снижают нагрузку на мотор в несколько раз первые 1000 км без повышения оборотов. После обкатки обязательно меняют моторное масло. При правильно проведении описанных работ к оборудованию вернётся первоначальная мощность.

Поршень двигателя

В кривошипно-шатунном механизме поршень выполняет несколько функций, среди которых восприятие давления газов и передача усилий на шатун, герметизация камеры сгорания и отвод от нее тепла. Поршень является наиболее характерной деталью двигателя внутреннего сгорания, т.к. именно с его помощью реализуется термодинамический процесс двигателя.

Условия, в которых работает поршень, экстремальны и характеризуются высоким давлением, температурой и инерционными нагрузками. Поэтому поршни на современных двигателях изготавливаются из легкого, прочного и термостойкого материала – алюминиевого сплава, реже из стали. Поршни изготавливаются двумя способами – литьем под давлением или штамповкой, т.н. кованые поршни.

Схема поршня двигателя

Поршень цельный конструктивный элемент, который условно разделяют на головку (в некоторых источниках ее называют днище) и юбку. Форма и конструкция поршня в значительной степени определяются типом двигателя, формой камеры сгорания и процессом сгорания, протекающим в ней. Поршень бензинового двигателя имеет плоскую или близкую к плоской поверхность головки. В ней могут быть выполнены канавки для полного открытия клапанов. Поршни двигателей с непосредственным впрыском топлива имеют более сложную форму. В головке поршня дизельного двигателя выполняется камера сгорания определенной формы, которая обеспечивает хорошее завихрение и улучшает смесеобразование.

Ниже головки поршня выполняются канавки для установки поршневых колец. Юбка поршня имеет конусообразную или криволинейную (бочкообразную) форму. Такая форма юбки компенсирует температурное расширение поршня при нагреве. При достижении рабочей температуры двигателя поршень принимает цилиндрическую форму. Для снижения потерь на трение на боковую поверхность поршня наносится слой антифрикционного материала (дисульфид молибдена, графит). В юбке поршня выполнены отверстия с приливами (бобышки) для крепления поршневого пальца.

Охлаждение поршня осуществляется со стороны внутренней поверхности различными способами:

  1. масляный туман в цилиндре;
  2. разбрызгивание масла через отверстие в шатуне;
  3. разбрызгивание масла специальной форсункой;
  4. впрыскивание масла в специальный кольцевой канал в зоне колец;
  5. циркуляция масла по трубчатому змеевику в головке поршня.

Поршневые кольца образуют плотное соединение поршня со стенками цилиндра. Они изготавливаются из модифицированного чугуна. Поршневые кольца основной источник трения в двигателе внутреннего сгорания. Потери на трение в кольцах достигают до 25% всех механических потерь в двигателе.

Число и расположение колец зависит от типа и назначения двигателя. Самая распространенная схема – два компрессионных и одно маслосъемное кольцо. Компрессионные кольца препятствуют прорыву газов из камеры сгорания в картер двигателя. Первое компрессионное кольцо работает в наиболее тяжелых условиях. Поэтому на поршнях дизельных и ряда форсированных бензиновых двигателей в канавке кольца устанавливается стальная вставка, повышающая прочность и позволяющая реализовать максимальную степень сжатия. Компрессионные кольца могут иметь трапециевидную, бочкообразную, коническую форму, некоторые выполняются с порезом (вырезом).

Маслосъемное кольцо удаляет излишки масла с поверхности цилиндра и препятствует попаданию масла в камеру сгорания. Кольцо имеет множество дренажных отверстий. Некоторые конструкции колец имеют пружинный расширитель.

Соединение поршня с шатуном осуществляется с помощью поршневого пальца, который имеет трубчатую форму и изготавливается из стали. Имеется несколько способ установки поршневого пальца. Самый популярный т.н. плавающий палец, который имеет возможность проворачиваться в бобышках и поршневой головке шатуна во время работы. Для предотвращения смещения пальца он фиксируется стопорными кольцами. Значительно реже применяется жесткое закрепление концов пальца в поршне или жесткое закрепление пальца в поршневой головке шатуна.

Поршень, поршневые кольца и поршневой палец носят устоявшееся название поршневая группа.

 

 

Рама, картер и блок-картер цилиндры поршни поршневые кольца

Рама, картер и блок-картер являются базовыми деталями компрессора. В них расположен шатунно-кривошипный механизм, усилия от работы которого они воспринимают.

Картеры бескрейцкопфных компрессоров работают под давлением. Герметичность картера улучшается с уменьшением числа разъемов, поэтому цилиндры изготавливаются в одной отливке с картером — блок-картере. Картер представляет собой пустотелую отливку с окнами для монтажа, гнездами для подшипников и приливами для крепления деталей.

Материалом для картеров и блок-картеров служат чугун, сталь или сплавы алюминия. Внутреннее пространство картеров (нижняя часть) служит емкостью для заливаемого в компрессор смазочного масла.

Рама, картер и блок-картер должны быть жесткими, прочными и удобными для крепления цилиндров, коленчатых валов с кривошипами и шатунами и вспомогательных узлов компрессора: сальников, масляных насосов и т. д.

Цилиндры в крейцкопфных компрессорах выполняются в виде самостоятельных отливок, в которых размещаются нагнетательные и всасывающие клапаны. В цилиндре происходит возвратно-поступательное движение поршня, сжимающего пары хладагента.

В вертикальных и V-образных компрессорах два цилиндра отливают в виде одной детали, называемой цилиндровым блоком, в нижней части которого делают фланцевый прилив для крепления к картеру, а на боковых стенках — полости всасывания и нагнетания.

В верхней части цилиндров расположены рубашки или ребра охлаждения. Зеркало цилиндров обрабатывают шлифованием.

В блок-картерных машинах в гнезда цилиндровой части блок-картера вставляют с прессовой посадкой специально обработанные цилиндровые гильзы.

Сверху цилиндры закрывают двумя крышками внутренней и наружной, которые крепятся к цилиндрам на болтах и шпильках через прокладки. На внутренних крышках большинства компрессоров размещаются клапаны.


Рис. 20. Поршни: а — тронковый, б — дисковый со съемной вставкой

Поршни. Назначение поршня — всасывание, сжатие и выталкивание паров из цилиндра. Развитая цилиндрическая поверхность поршня (рис. 20) состоит из двух поясов: верхнего с расположенными на нем компрессионными кольцами и нижнего с маслосъемными кольцами, утопленными в особых канавках.

Поршень соединен с шатуном (рис. 21) поршневым пальцем 6. В месте крепления поршневого пальца делают специальные приливы (бобышки).

Поршни изготавливают как цельными, так и составными со съемной вставкой (см. рис. 20, б) для поршневых колец.

Все части составного поршня затягивают стальной гайкой специальным ключом. Поршневая гайка закрепляется стопорной шпилькой со шплинтом.

Поршни непрямоточных компрессоров выполняют непроходными с верхним сплошным дном, поршни прямоточных — проходными, с отверстиями и окнами для прохода паров.


Рис. 21 Соединение поршня с шатуном:
1 — маслосъемное кольцо,
2 — нижние компрессионные кольца,
3 — поршень,
4 — верхние компрессионные кольца,
5 — всасывающий клапан,
6 — поршневой палец,
7 — шатун,
8 — шатунный болт, 9 — шатунный подшипник


Рис. 22. Поршневые кольца

Поршневые кольца (рис. 22) предотвращают утечку паров из полости сжатия и обеспечивают удаление излишков смазки с зеркала цилиндра. Поршневые кольца выполняются разрезными, с замком. Замок бывает прямой, косой или внахлестку (ступенчатый). Диаметр колец несколько больше диаметра поршня. Уплотнение обеспечивается упругостью колец и сдвигом замков по отношению друг к другу при сборке. Поршневые кольца выполняют из мелкозернистого серого чугуна и подвергают тщательной термической обработке. От их качества во многом зависит холодопроизводительность компрессора.

По своему назначению поршневые кольца делятся на уплотнительные, устанавливаемые в верхней части поршня, и маслосъемные.

Маслосъемные кольца имеют срезанную на конус наружную поверхность или специальные прорези для сбора масла. Они сгоняют масло, разбрызганное шатунами по стенке цилиндра, обратно в картер. Кольца изготовляют методами отливки каждого кольца либо из пустотелой литой болванки — маслоты.

Поршни, или Устройство и работа кривошипа - часть 1

Основные задачи поршней

Основными задачами поршней являются:

  • уплотнения цилиндров
  • Передача тяги от газов к расположенным ниже по потоку частям кривошипно-шатунной системы
  • Направляющая шатуна сверху
  • достаточно эффективный отвод тепла от поверхности (поршня), контактирующей с выхлопными газами

Форма поршня также влияет на соответствующие условия сгорания в цилиндре , напримертурбулентность топливно-воздушной смеси. Поршень также должен быть легким, но в то же время прочным и устойчивым к истиранию. Надлежащее тепловое расширение и благоприятные условия теплопроводности могут быть достигнуты путем выбора соответствующего материала.

Наиболее часто используемым материалом для поршней сегодня являются алюминиевые сплавы с добавками кремния, магния, меди и никеля . Это дает им достаточно малый вес, и в результате вся шатунная система менее нагружена из-за более низких сил инерции.

Компоненты поршня

Конструкция поршня

В конструкцию поршня входят следующие элементы:

  • Днище

    Форма днища поршня, особенно в двигателях с воспламенением от сжатия, зависит от типа камеры сгорания. Например, когда мы имеем дело с непосредственным впрыском, большая часть смеси сгорает в днище соответствующей формы. В случае раздельной камеры сгорания (вихревая камера и форкамера), обычно используемой в сочетании с непрямым впрыском, днища поршней обычно плоские или слегка выпуклые для повышения их прочности.

    Примеры форм днища

  • Кольцевая часть

    Как следует из названия, эта деталь содержит кольца, которые выполняют две основные задачи: уплотнение поршня в цилиндре и отвод тепла от поршня к стенкам цилиндра. Изготавливаются из серого чугуна, высокопрочного чугуна или легированного чугуна с добавками хрома, никеля и молибдена.

    Кольца имеют разрез по окружности, чтобы их можно было установить на поршень (обычно 2 или 3) и придать им достаточную эластичность. Первые кольца сверху используются для герметизации . Иногда средний играет роль и уплотнителя, и скребка (компрессионно-скребкового). Самое дальнее от днища поршня кольцо снимает лишнее масло со стенок цилиндра, чтобы предотвратить его попадание в камеру сгорания.

    Структура поршневых колец

  • Направляющая часть

    Также известная как юбка поршня, она направляет поршень в цилиндре и передает его усилия на стенки цилиндра. Эта часть наиболее подвержена истиранию. Правильная работа не только направляющей части, но и всего поршня во многом зависит от его теплового расширения и оставшегося зазора между ним и цилиндром.

    Слишком маленький зазор приведет к заклиниванию поршня после нагрева и расширения, а слишком большой зазор приведет к его неправильному положению в цилиндре и снижению герметичности. В поршнях некоторых двигателей используются специальные вставки из труднорасширяемого материала. Они позволяют ограничивать и контролировать тепловое расширение юбки поршня. Недостатком, однако, является ухудшение отвода тепла к нижним частям кожуха.

  • Ступицы

    Ступицы внутри поршня служат опорой для стального штифта, соединяющего поршень с шатуном. Обычно этот штифт может вращаться как в ступице, так и в шатуне, , хотя иногда он может оставаться неподвижным в одном из этих компонентов. Пружинные кольца защищают его от соскальзывания со ступицы.

Оцените качество нашей статьи: Ваши отзывы помогают нам создавать лучший контент.

.

Так работает поршень! - MotoFocus.pl

Как работает поршень? Что такое компоненты? Как он охлаждается? Какова функция поршневых колец? Что такое ход поршня? В этой статье даны ответы.

В составе двигателя внутреннего сгорания поршень преобразует энергию, выделяющуюся в процессе сгорания, в механическую работу и передает ее в виде вращательного усилия на коленчатый вал через поршневой палец и шатун.

Как работает поршень

При работающем двигателе поршень движется вверх и вниз в цилиндре. В поворотных моментах он замедляется, а затем резко ускоряется. Это создает силы инерции массы, действующие на поршень. Вместе с силами от давления газов они образуют результирующую силу на поршень, которая передается на шатун и коленчатый вал. Шатуны находятся в строго вертикальном положении только в нижней и верхней точке поворота.Из-за наклонного положения шатуна поршень прижимается сбоку к стенке цилиндра. Во время рабочего такта эта сила многократно меняет свою величину и направление: она зависит от силы, действующей на поршень, и угла наклона днища поршня по отношению к оси шатуна. Поршни снабжены поршневыми кольцами. Они герметизируют камеру сгорания и рабочее пространство от картера. Кроме того, они соскребают масло со стенок цилиндров и таким образом регулируют расход масла. Кроме того, перед поршневыми кольцами стоит задача передачи тепла, поглощаемого поршнем от процесса сгорания, на охлаждаемую поверхность цилиндра.

Иллюстрацию описанных выше процессов можно увидеть на анимации ниже:

.

Кольца поршневые - Кривошипные системы. Продукты, цены, мнения, советы и решения на Intercars.pl Inter Cars S.A.

Кольца поршневые - Кривошипные системы. Продукты, цены, мнения, советы и решения на Intercars.pl Inter Cars S.A. - Магазин Интер Авто
К сожалению, для правильной работы веб-сайта необходимо включить JavaScript в настройках вашего браузера.
Сортировать по: По релевантности Из самых дешевых Из самых дорогих По имени

Критерии размещения

Вы просматриваете этот сайт на своем телефоне или планшете? открыть версию для мобильных устройств

Мы хотим, чтобы вам было удобно пользоваться нашим сайтом.Для этого мы стараемся адаптировать контент, доступный на нашем веб-сайте, к вашим предпочтениям. Это возможно благодаря хранению файлов cookie в вашем браузере и их обработке компанией Inter Cars S.A., расположенной в Варшаве, ул. Powsińska 64, 02-903 Warszawa и персональные данные доверенных партнеров для аналитических, статистических и маркетинговых целей. Продолжая использовать наш веб-сайт без изменения настроек конфиденциальности, вы даете согласие на сохранение файлов cookie в вашем браузере.Помните, что вы всегда можете изменить настройки файлов cookie, получить дополнительную информацию о правилах обработки ваших персональных данных и ваших правах в нашей Политике конфиденциальности.

× .

Поршневые кольца двигателя (комплект) - магазин: автомобильный двигатель на iParts.pl

Поршневые кольца автомобильных двигателей

Процесс, в котором участвуют поршневые кольца , это передача тепла в цилиндр непосредственно от поршней, а также надлежащая герметизация камеры сгорания от чрезмерной утечки масла. Как видите, их роль в процессе сгорания и контроле расхода масла очень важна. Износ поршневых колец обычно влияет на общий износ узла привода.Замените кольца на новые на iParts.pl по самой низкой рыночной цене!

Кольца поршневые на автомобиль

Автомобильные поршневые кольца представляют собой уплотнительные элементы, основной функцией которых является отделение камеры сгорания двигателя внутреннего сгорания от картера. В большинстве случаев поршневые кольца изготавливаются из чугуна, а их рабочие поверхности хромируются или покрываются молибденом. Поршневое кольцо разрезается пополам, чтобы его можно было расширить и надеть на поршень.Такая конструкция кольца также необходима для обеспечения достаточного давления внешней поверхности кольца на гильзу цилиндра. Место, где происходит пересечение, называется застежкой-молнией. Кроме того, между кольцом и цилиндром имеется тонкий слой масла, который отвечает за уменьшение трения между самим кольцом и гильзой цилиндра. Среди типичных неисправностей поршневых колец - течь, что приводит к падению компрессии и, как следствие, к потере мощности в приводном узле.

Как работают поршневые кольца

В традиционных автомобильных двигателях используются три типа поршневых колец - уплотнительные, скребковые и компрессионно-скребковые. Первый тип колец предназначен для поддержания максимально возможной компрессии, а также для предотвращения утечки выхлопных газов, закрытых под высоким давлением в камере над поршнем, которое иногда близко к атмосферному давлению. Поршневые кольца скребки, с другой стороны, соскребают лишнее масло с гильзы цилиндра, предотвращая попадание избыточного количества масла в пространство над поршнем.Последний тип поршневых колец, т. е. , поршневые кольца компрессионно-скребкового двигателя , имеют основную задачу останавливать проникшие через уплотнительное кольцо газы и соскребать лишнее масло с поверхности цилиндра.

Типичные неисправности поршневых колец в автомобиле

Одним из наиболее частых дефектов поршневых колец является их заедание, заключающееся в заедании колец в канавках поршня нагаром, образующимся при сгорании топлива.Кроме того, к частым неисправностям поршневых колец относится и их излом, на который в большей степени влияет человеческий фактор, либо из-за неправильной сборки, либо из-за низкого качества самих поршневых колец.

Популярные производители поршневых колец

  • Детали Японии
  • Колбеншмидт
  • Мэйл Оригинал
  • Асика
  • Двигатель Гетце

Если вам нужен высококачественный комплект поршневых колец для вашего автомобиля, выберите марку автомобиля из списка выше, затем введите модель и год выпуска и, наконец, версию двигателя вашего автомобиля.Наша система найдет то, что вы ищете, за считанные секунды.

На iParts.pl вы получите комплект поршневых колец от проверенных и заслуживающих доверия производителей. Все предлагаемые товары являются новыми и на них распространяется гарантия производителя. Мы обеспечиваем профессиональное обслуживание на каждом этапе покупки, дешевых поршневых колец с очень хорошими техническими параметрами и немедленным выполнением заказа.

.

Поврежденные детали с плохой смазкой и другие причины повреждения поршня [ФОТО]

Что происходит, когда несмазанные поршни, поршневые кольца и поверхности цилиндров трутся друг о друга? Каковы последствия работы двигателя со слишком богатой смесью, которая нарушает сгорание? На эти и другие вопросы отвечают специалисты МС Моторсервис.

Задиры из-за недостаточной смазки также могут возникать при достаточном зазоре между цилиндром и поршнем. Здесь масляная пленка нарушается, часто только локально, из-за высоких температур или залива топливом.В этих местах несмазанные поверхности поршней, поршневых колец и рабочей поверхности цилиндра трутся друг о друга. Это быстро приводит к потертостям на поверхностях. Аналогичное явление возникает, когда между поршнем и цилиндром не образуется достаточная масляная пленка из-за недостатка масла.

Характерные признаки задира из-за недостаточной смазки:

При полном отсутствии масляной пленки:

Очень ограниченный, поперечный задир с ярко выраженной темной поверхностью.

В случае нехватки масла
Знаки идентичны вышеуказанным, за исключением темной поверхности. Поверхность ссадин практически металлически чистая и не имеет темного оттенка. Дефицит масла распространяется на всю поверхность цилиндра. Поэтому на поршне уже в зачаточном состоянии часто можно обнаружить потертости как с верхней, так и с нижней стороны.

Задир из-за недостаточной смазки поршня

  • Задир на верхней стороне юбки поршня, частично заходящий в зону поршневых колец.
  • Легкие потертости на нижней стороне.
  • Поверхность изъятий блестящая, почти металлически чистая.

Критическая нехватка смазки между поршнем и отверстием цилиндра. Почти металлически чистая поверхность задиров свидетельствует о том, что масляная пленка еще присутствовала при образовании абразии, но ее качество уже значительно снизилось. Ввиду незначительной степени повреждения это либо временная нехватка масла, либо начальная стадия повреждения. Продолжение работы двигателя может привести к еще более серьезным повреждениям.

ПРИМЕЧАНИЕ

При этом типе задира, вызванного недостаточным смазыванием, повреждение всегда находится вблизи юбки поршня, т. е. там, где характер износа является нормальным при эксплуатации неповрежденного поршня.

Возможные причины

Недостаточная смазка по следующим причинам:

  • Недостаточное количество моторного масла.
  • Слишком низкое давление масла в двигателе (масляный насос, предохранительный клапан и т. д.): Из подшипников коленчатого вала выходит слишком мало масла. Недостаточное количество масла попадает на рабочую поверхность цилиндра, который смазывается разбрызгиванием маслом для коленчатого вала.
  • Неисправность масляной форсунки в системе охлаждения поршней.

Односторонняя потертость на юбке поршня только с верхней стороны

  • Крупные задиры темного цвета с сильно поврежденной поверхностью на верхней стороне поршня.
  • Противоположная сторона юбки поршня не повреждена.
  • Зона поршневых колец в начальной стадии в основном без повреждений.

Это типичные задиры из-за недостаточной смазки и обычно возникают с верхней стороны, реже с нижней. Повреждение вызвано разрывом масляной пленки только на одной половине цилиндра. Причина в локальном недостатке смазки или перегреве соответствующей стороны цилиндра. Однако причиной повреждения не может быть недостаточный люфт, так как, несмотря на сильные потертости, на нижней стороне противоположной стороны потертостей нет.

Возможные причины

  • Частичный отказ системы охлаждения из-за нехватки хладагента, пузырьков воздуха, отложений грязи и других нарушений в системе охлаждения.
  • В случае ребристых цилиндров внешние отложения грязи могут привести к местному перегреву и, таким образом, к разрыву масляной пленки.
  • На двигателях с воздушным охлаждением: неисправны, отсутствуют или неправильно установлены обтекатели цилиндров.
  • Неисправность масляной форсунки в системе охлаждения поршней.
  • Давление масла слишком низкое: недостаточная смазка верхней стороны цилиндра для шатунов с масляными форсунками.
  • Недостаточная смазка верхней части цилиндра с большей нагрузкой из-за разбавления масла или качества масла, не адаптированного к условиям эксплуатации.

Следы трения из-за недостаточной смазки из-за залива топлива

Узкие, резко ограниченные, продольные задиры на юбке поршня вместо нормального износа поршня.

Несгоревшее топливо конденсируется на стенке цилиндра и разжижает или даже полностью удаляет масляную пленку. Это вызывает разрушение смазочного слоя между взаимодействующими элементами, т. е. поршнем и отверстием цилиндра, что приводит к удлиненным узким задирам. Зона поршневых колец практически не повреждена.

ПРИМЕЧАНИЕ

При задирах, вызванных топливом, происходит повреждение опорных частей юбки поршня. Если поршень не поврежден, то он имеет нормальный характер износа.

Возможные причины

  • Двигатель работает на слишком богатой смеси, нарушения сгорания из-за ошибок в системе контроля состава смеси или в системе зажигания.
  • Неполное сгорание из-за недостаточного сжатия.
  • Повреждение или слишком долгая работа системы запуска холодного двигателя (карбюраторный двигатель).
  • Разжижение масла из-за частых коротких пробегов или слишком богатой смеси.
.

Смотрите также

     ico 3M  ico armolan  ico suntek  ico llumar ico nexfil ico suncontrol jj rrmt aswf